Modified fuzzy K-means clustering using expectation maximization

被引:26
作者
Nasser, Sara [1 ]
Alkhaldi, Rawan [1 ]
Vert, Gregory [1 ]
机构
[1] Univ Nevada, Dept Comp Sci & Engn, 171, Reno, NV 89557 USA
来源
2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5 | 2006年
关键词
D O I
10.1109/FUZZY.2006.1681719
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
K-means is a popular clustering algorithm that requires a huge initial set to start the clustering. K-means is an unsupervised clustering method which does not guarantee convergence. Numerous improvements to K-means have been done to make its performance better. Expectation Maximization is a statistical technique for maximum likelihood estimation using mixture models. It searches for a local maxima and generally converges very well. The proposed algorithm combines these two algorithms to generate optimum clusters which do not require a huge value of K and each cluster attains a more natural shape and guarantee convergence. The paper compares the new method with Fuzzy K-means on benchmark iris data.
引用
收藏
页码:231 / +
页数:2
相关论文
共 22 条
[11]  
Estivill-Castro V., 2000, PRICAI 2000. Topics in Artificial Intelligence. 6th Pacific Rim International Conference on Artificial Intelligence. Proceedings (Lecture Notes in Artificial Intelligence Vol.1886), P208
[12]  
FORGY EW, 1965, BIOMETRICS, V21, P768
[13]   UNSUPERVISED OPTIMAL FUZZY CLUSTERING [J].
GATH, I ;
GEVA, AB .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :773-781
[14]  
Ghahramani Z., 1994, Advances in Neural Information Processing Systems, V6, P120
[15]  
Gunn S. R., 1998, ISIS technical report, V14, P5, DOI DOI 10.1039/B918972F
[16]   Interactive clustering and merging with a new fuzzy expected value [J].
Looney, CG .
PATTERN RECOGNITION, 2002, 35 (11) :2413-2423
[17]  
MacQueen J., 1967, P 5 BERK S MATH STAT, V14, P281, DOI DOI 10.1234/12345678
[18]  
Nefian AV, 2002, INT CONF ACOUST SPEE, P2013
[19]   K-MEANS-TYPE ALGORITHMS - A GENERALIZED CONVERGENCE THEOREM AND CHARACTERIZATION OF LOCAL OPTIMALITY [J].
SELIM, SZ ;
ISMAIL, MA .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (01) :81-87
[20]  
SURMANN H, 1993, EUFIT 93 1 EUR C FUZ, V2, P1097