Modified fuzzy K-means clustering using expectation maximization

被引:26
作者
Nasser, Sara [1 ]
Alkhaldi, Rawan [1 ]
Vert, Gregory [1 ]
机构
[1] Univ Nevada, Dept Comp Sci & Engn, 171, Reno, NV 89557 USA
来源
2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5 | 2006年
关键词
D O I
10.1109/FUZZY.2006.1681719
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
K-means is a popular clustering algorithm that requires a huge initial set to start the clustering. K-means is an unsupervised clustering method which does not guarantee convergence. Numerous improvements to K-means have been done to make its performance better. Expectation Maximization is a statistical technique for maximum likelihood estimation using mixture models. It searches for a local maxima and generally converges very well. The proposed algorithm combines these two algorithms to generate optimum clusters which do not require a huge value of K and each cluster attains a more natural shape and guarantee convergence. The paper compares the new method with Fuzzy K-means on benchmark iris data.
引用
收藏
页码:231 / +
页数:2
相关论文
共 22 条
[1]  
Abd-Almageed W, 2002, INT C PATT RECOG, P721, DOI 10.1109/ICPR.2002.1048404
[2]  
ABDALMAGEED W, 2003, IEEE C SYST MAN CYB
[3]   Object recognition based on impulse restoration with use of the expectation-maximization algorithm [J].
Abu-Naser, A ;
Galatsanos, NP ;
Wernick, MN ;
Schonfeld, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (09) :2327-2340
[4]  
Aldenderfer M., 1984, Cluster Analysis, DOI DOI 10.4135/9781412983648
[5]  
Berry MichaelJ., 1997, DATA MINING TECHNIQU
[6]  
Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms
[7]  
Bradley P. S., 1998, Proceedings Fourth International Conference on Knowledge Discovery and Data Mining, P9
[8]  
Bradley PS, 1998, SCALING EXPECTATION, P0
[9]  
CHO H, 2002, OPTOMECHATRONIC SYST
[10]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38