Robust H∞ Sliding Mode Controller Design of a Class of Time-Delayed Discrete Conic-Type Nonlinear Systems

被引:83
作者
He, Shuping [1 ,2 ,3 ]
Lyu, Weizhi [1 ,2 ,4 ]
Liu, Fei [5 ,6 ]
机构
[1] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Peoples R China
[2] Anhui Univ, Sch Elect Engn & Automat, Hefei 230601, Peoples R China
[3] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
[4] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[5] Jiangnan Univ, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Jiangsu, Peoples R China
[6] Jiangnan Univ, Inst Automat, Wuxi 214122, Jiangsu, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2021年 / 51卷 / 02期
基金
中国国家自然科学基金;
关键词
Conic-type nonlinear system; discrete-time; H-infinity control; sliding mode control (SMC); time delays;
D O I
10.1109/TSMC.2018.2884491
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the H-infinity sliding mode control (SMC) problem for a class of discrete-time conictype nonlinear systems with time-delays and uncertainties. The nonlinear terms satisfy the conic-type constraint condition that lies in a know hyper-sphere with an uncertain center. By choosing a proper Lyapunov candidate, sufficient conditions are derived to ensure the asymptotic stability of the sliding mode dynamics while achieving a prescribed H-infinity disturbance attenuation level and finally converted into a minimization problem. The controller is constructed to guarantee the discrete-time reach condition and maintain the states on the prespecified sliding surface. A simulation result and a practical example related to the Chua's circuit are given at last to show the validity of our SMC strategy.
引用
收藏
页码:885 / 892
页数:8
相关论文
共 33 条
[1]   On the discrete-time integral sliding-mode control [J].
Abidi, Khalid ;
Xu, Jian-Xin ;
Yu Xinghuo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (04) :709-715
[2]   Global Sliding Mode Control Via Linear Matrix Inequality Approach for Uncertain Chaotic Systems With Input Nonlinearities and Multiple Delays [J].
Afshari, Mona ;
Mobayen, Saleh ;
Hajmohammadi, Rahman ;
Baleanu, Dumitru .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (03)
[3]  
[Anonymous], 2011, P 18 WORLD C IFAC MI
[4]   A UNIVERSAL CIRCUIT FOR STUDYING AND GENERATING CHAOS .1. ROUTES TO CHAOS [J].
CHUA, LO ;
WU, CW ;
HUANG, AS ;
ZHONG, GQ .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1993, 40 (10) :732-744
[5]  
ElBsat M. N., 2012, Proc. 7th IFAC Symp. Robust Control Design, P15, DOI [10.3182/20120620-3-DK-2025.00145, DOI 10.3182/20120620-3-DK-2025.00145]
[6]   Robust and resilient finite-time bounded control of discrete-time uncertain nonlinear systems [J].
ElBsat, Mohammad N. ;
Yaz, Edwin E. .
AUTOMATICA, 2013, 49 (07) :2292-2296
[7]  
Feng F, 2013, P AMER CONTR CONF, P5869
[8]   DISCRETE-TIME VARIABLE-STRUCTURE CONTROL-SYSTEMS [J].
GAO, WB ;
WANG, YF ;
HOMAIFA, A .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1995, 42 (02) :117-122
[9]   Robust Finite-Time Bounded Controller Design of Time- Delay Conic Nonlinear Systems Using Sliding Mode Control Strategy [J].
He, Shuping ;
Song, Jun ;
Liu, Fei .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (11) :1863-1873
[10]   Finite-time Sliding Mode Control Design for a Class of Uncertain Conic Nonlinear Systems [J].
He, Shuping ;
Song, Jun .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2017, 4 (04) :809-816