Dye-Sensitized Cu2XSnS4 (X=Zn, Ni, Fe, Co, and Mn) Nanofibers for Efficient Photocatalytic Hydrogen Evolution

被引:71
作者
Gonce, Mehmet Kerem [1 ]
Aslan, Emre [2 ]
Ozel, Faruk [3 ]
Patir, Imren Hatay [2 ]
机构
[1] Selcuk Univ, Dept Nanotechnol & Adv Mat, TR-42030 Konya, Turkey
[2] Selcuk Univ, Dept Chem, TR-42030 Konya, Turkey
[3] Karamanoglu Mehmetbey Univ, Dept Mat Sci & Engn, TR-70200 Karaman, Turkey
关键词
energy conversion; hydrogen; nanofibers; photocatalysis; water splitting; SEMICONDUCTOR CU2MSNS4 M; BAND-GAP; CU2ZNSNS4; WATER; NANOCRYSTALS; PHOTOVOLTAICS; FABRICATION; POLYMER; FIBERS; EOSIN;
D O I
10.1002/cssc.201501661
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The photocatalytic hydrogen evolution activities of low-cost and noble-metal-free Cu2XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofiber catalysts have been investigated using triethanolamine as an electron donor and eosinY as a photosensitizer under visible-light irradiation. The rates of hydrogen evolution by Cu2XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofibers have been compared with each other and with that of the noble metal Pt. The hydrogen evolution rates for the nanofibers change in the order Cu2NiSnS4>Cu2FeSnS4>Cu2CoSnS4>Cu2ZnSnS4>Cu2MnSnS4 (2028, 1870, 1926, 1420, and 389molg(-1)h(-1), respectively). The differences between the hydrogen evolution rates of the nanofibers could be attributed to their energy levels. Moreover, Cu2NiSnS4, Cu2FeSnS4, and Cu2CoSnS4 nanofibers show higher and more stable photocatalytic hydrogen production rates than that of the noble metal Pt under long-term irradiation with visible light.
引用
收藏
页码:600 / 605
页数:6
相关论文
共 44 条
  • [1] Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation
    Abe, R
    Hara, K
    Sayama, K
    Domen, K
    Arakawa, H
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2000, 137 (01) : 63 - 69
  • [2] A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell
    Ahmed, Shafaat
    Reuter, Kathleen B.
    Gunawan, Oki
    Guo, Lian
    Romankiw, Lubomyr T.
    Deligianni, Hariklia
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (02) : 253 - 259
  • [3] Cyclodextrin nanofibers by electrospinning
    Celebioglu, Asti
    Uyar, Tamer
    [J]. CHEMICAL COMMUNICATIONS, 2010, 46 (37) : 6903 - 6905
  • [4] Semiconductor-based Photocatalytic Hydrogen Generation
    Chen, Xiaobo
    Shen, Shaohua
    Guo, Liejin
    Mao, Samuel S.
    [J]. CHEMICAL REVIEWS, 2010, 110 (11) : 6503 - 6570
  • [5] Titania nanofibers as a photo-antenna for dye-sensitized solar hydrogen
    Choi, Sung Kyu
    Kim, Soonhyun
    Ryu, Jungho
    Lim, Sang Kyoo
    Park, Hyunwoong
    [J]. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2012, 11 (09) : 1437 - 1444
  • [6] A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals
    Cui, Yong
    Deng, Ruiping
    Wang, Gang
    Pan, Daocheng
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (43) : 23136 - 23140
  • [7] Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange
    Das, Amit
    Han, Zhiji
    Haghighi, Mohsen Golbon
    Eisenberg, Richard
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (42) : 16716 - 16723
  • [8] Kesterite thin films for photovoltaics: a review
    Delbos, S.
    [J]. EPJ PHOTOVOLTAICS, 2012, 3
  • [9] Spinning continuous fibers for nanotechnology
    Dzenis, Y
    [J]. SCIENCE, 2004, 304 (5679) : 1917 - 1919
  • [10] Hydrogen production by molecular photocatalysis
    Esswein, Arthur J.
    Nocera, Daniel G.
    [J]. CHEMICAL REVIEWS, 2007, 107 (10) : 4022 - 4047