Dye-Sensitized Cu2XSnS4 (X=Zn, Ni, Fe, Co, and Mn) Nanofibers for Efficient Photocatalytic Hydrogen Evolution

被引:71
作者
Gonce, Mehmet Kerem [1 ]
Aslan, Emre [2 ]
Ozel, Faruk [3 ]
Patir, Imren Hatay [2 ]
机构
[1] Selcuk Univ, Dept Nanotechnol & Adv Mat, TR-42030 Konya, Turkey
[2] Selcuk Univ, Dept Chem, TR-42030 Konya, Turkey
[3] Karamanoglu Mehmetbey Univ, Dept Mat Sci & Engn, TR-70200 Karaman, Turkey
关键词
energy conversion; hydrogen; nanofibers; photocatalysis; water splitting; SEMICONDUCTOR CU2MSNS4 M; BAND-GAP; CU2ZNSNS4; WATER; NANOCRYSTALS; PHOTOVOLTAICS; FABRICATION; POLYMER; FIBERS; EOSIN;
D O I
10.1002/cssc.201501661
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The photocatalytic hydrogen evolution activities of low-cost and noble-metal-free Cu2XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofiber catalysts have been investigated using triethanolamine as an electron donor and eosinY as a photosensitizer under visible-light irradiation. The rates of hydrogen evolution by Cu2XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofibers have been compared with each other and with that of the noble metal Pt. The hydrogen evolution rates for the nanofibers change in the order Cu2NiSnS4>Cu2FeSnS4>Cu2CoSnS4>Cu2ZnSnS4>Cu2MnSnS4 (2028, 1870, 1926, 1420, and 389molg(-1)h(-1), respectively). The differences between the hydrogen evolution rates of the nanofibers could be attributed to their energy levels. Moreover, Cu2NiSnS4, Cu2FeSnS4, and Cu2CoSnS4 nanofibers show higher and more stable photocatalytic hydrogen production rates than that of the noble metal Pt under long-term irradiation with visible light.
引用
收藏
页码:600 / 605
页数:6
相关论文
共 44 条
[1]   Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation [J].
Abe, R ;
Hara, K ;
Sayama, K ;
Domen, K ;
Arakawa, H .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2000, 137 (01) :63-69
[2]   A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell [J].
Ahmed, Shafaat ;
Reuter, Kathleen B. ;
Gunawan, Oki ;
Guo, Lian ;
Romankiw, Lubomyr T. ;
Deligianni, Hariklia .
ADVANCED ENERGY MATERIALS, 2012, 2 (02) :253-259
[3]   Cyclodextrin nanofibers by electrospinning [J].
Celebioglu, Asti ;
Uyar, Tamer .
CHEMICAL COMMUNICATIONS, 2010, 46 (37) :6903-6905
[4]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[5]   Titania nanofibers as a photo-antenna for dye-sensitized solar hydrogen [J].
Choi, Sung Kyu ;
Kim, Soonhyun ;
Ryu, Jungho ;
Lim, Sang Kyoo ;
Park, Hyunwoong .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2012, 11 (09) :1437-1444
[6]   A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals [J].
Cui, Yong ;
Deng, Ruiping ;
Wang, Gang ;
Pan, Daocheng .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (43) :23136-23140
[7]   Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange [J].
Das, Amit ;
Han, Zhiji ;
Haghighi, Mohsen Golbon ;
Eisenberg, Richard .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (42) :16716-16723
[8]   Kesterite thin films for photovoltaics: a review [J].
Delbos, S. .
EPJ PHOTOVOLTAICS, 2012, 3
[9]   Spinning continuous fibers for nanotechnology [J].
Dzenis, Y .
SCIENCE, 2004, 304 (5679) :1917-1919
[10]   Hydrogen production by molecular photocatalysis [J].
Esswein, Arthur J. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2007, 107 (10) :4022-4047