RECURRENT FRACTAL INTERPOLATION SURFACES ON TRIANGULAR DOMAINS

被引:7
|
作者
Liang, Zhen [1 ]
Ruan, Huo-Jun [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Recurrent Fractal Interpolation Surfaces; Box Dimension; Iterated Function Systems; Function Vertical Scaling Factors; MINKOWSKI DIMENSION; CONSTRUCTION;
D O I
10.1142/S0218348X19500853
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a general framework to construct recurrent fractal interpolation surfaces (RFISs) on triangular domains. Then we introduce affine RFISs, which are easy to be generated while there are no restrictions on interpolation points and vertical scaling factors. We also obtain the box dimension of affine RFISs under certain constraints.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Positivity and Stability of Rational Cubic Fractal Interpolation Surfaces
    Nallapu, Vijender
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [32] The box dimension of the bilinear fractal interpolation surfaces on grids
    Malysz, R
    CISST'03: PROCEEDING OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS AND TECHNOLOGY, VOLS 1 AND 2, 2003, : 738 - 744
  • [33] Estimation of Error for A Class of Perturbed Fractal Interpolation Surfaces
    Wang, Hongyong
    Cheng, Guosheng
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL II: MATHEMATICAL MODELLING, 2008, : 113 - 118
  • [34] Positivity and Stability of Rational Cubic Fractal Interpolation Surfaces
    Vijender Nallapu
    Mediterranean Journal of Mathematics, 2018, 15
  • [35] Bivariate Fractal Interpolation Functions on Triangular Domain for Numerical Integration and Approximation
    Aparna, M. P.
    Paramanathan, P.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (01)
  • [36] Fractal Interpolation and Integration over Two-Dimensional Triangular Meshes
    Sari, Zekeriya
    Kalender, Gizem
    Gunel, Serkan
    8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCE, 2019, 1391
  • [37] Numerical integration of bivariate fractal interpolation functions on rectangular domains
    Aparna, M. P.
    Paramanathan, P.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (07): : 1027 - 1041
  • [38] Numerical integration of bivariate fractal interpolation functions on rectangular domains
    M. P. Aparna
    P. Paramanathan
    The European Physical Journal Special Topics, 2023, 232 : 1027 - 1041
  • [39] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Bao, Fangxun
    Yao, Xunxiang
    Sun, Qinghua
    Zhang, Yunfeng
    Zhang, Caiming
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (09)
  • [40] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Fangxun Bao
    Xunxiang Yao
    Qinghua Sun
    Yunfeng Zhang
    Caiming Zhang
    Science China Information Sciences, 2018, 61