RECURRENT FRACTAL INTERPOLATION SURFACES ON TRIANGULAR DOMAINS

被引:7
|
作者
Liang, Zhen [1 ]
Ruan, Huo-Jun [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Recurrent Fractal Interpolation Surfaces; Box Dimension; Iterated Function Systems; Function Vertical Scaling Factors; MINKOWSKI DIMENSION; CONSTRUCTION;
D O I
10.1142/S0218348X19500853
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a general framework to construct recurrent fractal interpolation surfaces (RFISs) on triangular domains. Then we introduce affine RFISs, which are easy to be generated while there are no restrictions on interpolation points and vertical scaling factors. We also obtain the box dimension of affine RFISs under certain constraints.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An approximation theoretic revamping of fractal interpolation surfaces on triangular domains
    Viswanathan, P.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (05) : 2419 - 2455
  • [2] Construction of fractal surfaces by recurrent fractal interpolation curves
    Yun, Chol-hui
    O, Hyong-chol
    Choi, Hui-chol
    CHAOS SOLITONS & FRACTALS, 2014, 66 : 136 - 143
  • [3] Construction and box dimension of recurrent fractal interpolation surfaces
    Liang, Zhen
    Ruan, Huo-Jun
    JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (03) : 261 - 288
  • [4] NEW NONLINEAR RECURRENT HIDDEN VARIABLE FRACTAL INTERPOLATION SURFACES
    Kim, Hyonjin
    Kim, Jinmyong
    Mun, Hakmyong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (02)
  • [5] Image compression using recurrent bivariate fractal interpolation surfaces
    Bouboulis, P.
    Dalla, Leoni
    Drakopoulos, V.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (07): : 2063 - 2071
  • [6] Fractal interpolation surfaces derived from Fractal interpolation functions
    Bouboulis, P.
    Dalla, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 919 - 936
  • [7] Closed fractal interpolation surfaces
    Bouboulis, P.
    Dalla, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 116 - 126
  • [8] LOCAL FRACTAL INTERPOLATION ON UNBOUNDED DOMAINS
    Massopust, Peter R.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (01) : 151 - 167
  • [9] Affine recurrent fractal interpolation functions
    N. Balasubramani
    A. Gowrisankar
    The European Physical Journal Special Topics, 2021, 230 : 3765 - 3779
  • [10] Affine recurrent fractal interpolation functions
    Balasubramani, N.
    Gowrisankar, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3765 - 3779