Thermal expansion coefficient of diamond in a wide temperature range

被引:68
作者
Jacobson, P. [1 ]
Stoupin, S. [2 ]
机构
[1] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[2] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Diamond crystal; Thermal expansion; Thermal properties;
D O I
10.1016/j.diamond.2019.107469
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Experimental data for the linear thermal expansion coefficient of diamond available in the literature were analyzed and carefully selected to produce a representative dataset, which was fit with a multi-frequency Einstein model (R. Reeber, 1975) using a limited number of effective independent oscillators. In the temperature range of 10-300 K, the fits were constrained using the high-accuracy data (S. Stoupin and Yu. Shvyd'ko, 2011). It was found that the multi-frequency model precisely describes the available data from 10 K to approximately 1000 K. Above 1000 K, discrepancies were found, which suggest presence of anharmonic effects in diamond and/or influence of defects. The obtained semi-empirical formulas can be used as convenient continuous approximations for the thermal expansion coefficient in modeling thermoelastic behavior of diamond components subjected to large temperature variations.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Measurement of volumetric thermal expansion coefficient of various nanofluids
    A. K. Nayak
    R. K. Singh
    P. P. Kulkarni
    Technical Physics Letters, 2010, 36 : 696 - 698
  • [42] Graphene Origami with Highly Tunable Coefficient of Thermal Expansion
    Ho, Duc Tam
    Park, Harold S.
    Kim, Sung Youb
    Schwingenschlogl, Udo
    ACS NANO, 2020, 14 (07) : 8969 - 8974
  • [43] Changes in the coefficient of thermal expansion in stressed Gilsocarbon graphite
    Preston, SD
    Marsden, BJ
    CARBON, 2006, 44 (07) : 1250 - 1257
  • [44] Thermal Expansion Coefficient in Simple Models of Condensed Media
    Al. Al. Berlin
    O. V. Gendel'man
    M. A. Mazo
    L. I. Manevich
    Doklady Physical Chemistry, 2004, 397 : 187 - 190
  • [45] Potential use of CNTs for production of zero thermal expansion coefficient composite materials: An experimental evaluation of axial thermal expansion coefficient of CNTs using a combination of thermal expansion and uniaxial tensile tests
    Shirasu, Keiichi
    Nakamura, Akihiro
    Yamamoto, Go
    Ogasawara, Toshio
    Shimamura, Yoshinobu
    Inoue, Yoku
    Hashida, Toshiyuki
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2017, 95 : 152 - 160
  • [46] Determination of the coefficient of thermal expansion for alpha chloroacetic acid
    Haseneder, R
    Härtel, G
    MATERIALS CHEMISTRY AND PHYSICS, 2001, 68 (1-3) : 278 - 279
  • [47] Investigation of Natural Ester Insulating Fluid Properties and Thermal Model of a Transformer in Wide Temperature Range
    Leffler, Jan
    Sobotka, Lukas
    Mokra, Zdislava
    Pechanek, Roman
    Trnka, Pavel
    2022 INTERNATIONAL CONFERENCE ON DIAGNOSTICS IN ELECTRICAL ENGINEERING (DIAGNOSTIKA), 2022, : 50 - 53
  • [48] THERMAL PROPERTIES OF BIOLOGICAL TISSUE GEL-PHANTOMS IN A WIDE LOW-TEMPERATURE RANGE
    Agafonkina, I., V
    Belozerov, A. G.
    Berezovsky, Yu M.
    Korolev, I. A.
    Pushkarev, A., V
    Tsiganov, D., I
    Shakurov, A., V
    Zherdev, A. A.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2021, 94 (03) : 790 - 803
  • [49] Thermal Properties of Biological Tissue Gel-Phantoms in a Wide Low-Temperature Range
    I. V. Agafonkina
    A. G. Belozerov
    Yu. M. Berezovsky
    I. A. Korolev
    A. V. Pushkarev
    D. I. Tsiganov
    A. V. Shakurov
    A. A. Zherdev
    Journal of Engineering Physics and Thermophysics, 2021, 94 : 790 - 803
  • [50] A novel interferometric dilatometer in the 4-300 K temperature range: thermal expansion coefficient of SRM-731 borosilicate glass and stainless steel-304
    Martelli, V.
    Bianchini, G.
    Natale, E.
    Scarpellini, D.
    Ventura, G.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2013, 24 (10)