Thermal expansion coefficient of diamond in a wide temperature range

被引:68
作者
Jacobson, P. [1 ]
Stoupin, S. [2 ]
机构
[1] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[2] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Diamond crystal; Thermal expansion; Thermal properties;
D O I
10.1016/j.diamond.2019.107469
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Experimental data for the linear thermal expansion coefficient of diamond available in the literature were analyzed and carefully selected to produce a representative dataset, which was fit with a multi-frequency Einstein model (R. Reeber, 1975) using a limited number of effective independent oscillators. In the temperature range of 10-300 K, the fits were constrained using the high-accuracy data (S. Stoupin and Yu. Shvyd'ko, 2011). It was found that the multi-frequency model precisely describes the available data from 10 K to approximately 1000 K. Above 1000 K, discrepancies were found, which suggest presence of anharmonic effects in diamond and/or influence of defects. The obtained semi-empirical formulas can be used as convenient continuous approximations for the thermal expansion coefficient in modeling thermoelastic behavior of diamond components subjected to large temperature variations.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Precision Fitting of the Temperature Dependence of Density and Prediction of the Thermal Expansion Coefficient of Liqiuds
    G. M. Mikhailov
    V. G. Mikhailov
    L. S. Reva
    G. V. Ryabchuk
    Russian Journal of Applied Chemistry, 2005, 78 : 1067 - 1072
  • [22] Negative thermal expansion of ReO3 in the extended temperature range
    Chatterji, Tapan
    Hansen, Thomas C.
    Brunelli, Michela
    Henry, Paul F.
    APPLIED PHYSICS LETTERS, 2009, 94 (24)
  • [23] On the dependence of the coefficient of thermal expansion on density
    Zharkov, VN
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1998, 109 (1-2) : 79 - 89
  • [24] Coefficient of thermal expansion of the β and δ polymorphs of HMX
    Weese, RK
    Burnham, AK
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2005, 30 (05) : 344 - 350
  • [25] A review of the coefficient of thermal expansion and thermal conductivity of graphite
    Zhao, Lu
    Tang, Jiang
    Zhou, Min
    Shen, Ke
    NEW CARBON MATERIALS, 2022, 37 (03) : 544 - 555
  • [26] Low thermal expansion over a wide temperature range of Zr1-xFexV2-xMoxO7 (0 ≤ x ≤ 0.9)
    Yuan, Baohe
    Liu, Xiansheng
    Mao, Yanchao
    Wang, Junqiao
    Guo, Juan
    Cheng, Yongguang
    Song, Wenbo
    Liang, Erjun
    Chao, Mingju
    MATERIALS CHEMISTRY AND PHYSICS, 2016, 170 : 162 - 167
  • [27] Ab initio temperature dependence of the thermal expansion of diamond and the frequency shift of optical phonons
    T. A. Ivanova
    B. N. Mavrin
    Physics of the Solid State, 2013, 55 : 160 - 163
  • [28] Temperature dependence of thermal expansion coefficient of silver nanoparticles and of bulk material determined by EXAFS
    Dubiel, M
    Brunsch, S
    Tröger, L
    JOURNAL OF SYNCHROTRON RADIATION, 2001, 8 : 539 - 541
  • [29] Thermal expansion coefficient and bulk modulus of silicides
    Imai, Motoharu
    Hiroto, Takanobu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (SD)
  • [30] Thermal expansion coefficient of Y-α′-sialon
    T Okamoto
    Y Ukyo
    Journal of Materials Science, 1997, 32 : 2473 - 2477