An adaptive uzawa FEM for the stokes problem:: Convergence without the inf-sup condition

被引:57
作者
Bänsch, E
Morin, P
Nochetto, RH
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Free Univ Berlin, D-14195 Berlin, Germany
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
a posteriori error estimators; adaptive mesh refinement; convergence; data oscillation; performance; quasi-optimal meshes;
D O I
10.1137/S0036142901392134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and study an adaptive finite element method (FEM) for the Stokes system based on an Uzawa outer iteration to update the pressure and an elliptic adaptive inner iteration for velocity. We show linear convergence in terms of the outer iteration counter for the pairs of spaces consisting of continuous finite elements of degree k for velocity, whereas for pressure the elements can be either discontinuous of degree k - 1 or continuous of degree k - 1 and k. The popular Taylor-Hood family is the sole example of stable elements included in the theory, which in turn relies on the stability of the continuous problem and thus makes no use of the discrete inf-sup condition. We discuss the realization and complexity of the elliptic adaptive inner solver and provide consistent computational evidence that the resulting meshes are quasi-optimal.
引用
收藏
页码:1207 / 1229
页数:23
相关论文
共 21 条
[1]  
Ainsworth M, 2000, PUR AP M-WI, DOI 10.1002/9781118032824
[2]  
Bansch E., 1991, Impact of Computing in Science and Engineering, V3, P181, DOI 10.1016/0899-8248(91)90006-G
[3]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[4]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[5]  
COHEN A, 2000, ADAPTIVE WAVELET MET, V2
[6]  
Crouzeix M., 1974, Cahier, V12, P139
[7]   Adaptive wavelet methods for saddle point problems [J].
Dahlke, S ;
Hochmuth, R ;
Urban, K .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (05) :1003-1022
[8]   Adaptive wavelet methods for saddle point problems optimal convergence rates [J].
Dahlke, S ;
Dahmen, W ;
Urban, K .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) :1230-1262
[9]  
DAHLKE S, 2000, MULTIGRID METHODS, V6, P66