Area-Selective Atomic Layer Deposition Patterned by Electrohydrodynamic Jet Printing for Additive Manufacturing of Functional Materials and Devices

被引:46
作者
Cho, Tae H. [1 ]
Farjam, Nazanin [1 ]
Allemang, Christopher R. [2 ]
Pannier, Christopher P. [1 ]
Kazyak, Eric [1 ]
Huber, Carli [3 ]
Rose, Mattison [1 ]
Trejo, Orlando [1 ]
Peterson, Rebecca L. [2 ,3 ]
Barton, Kira [1 ]
Dasgupta, Neil P. [1 ,3 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
additive manufacturing; atomic layer deposition; electrohydrodynamic jet printing; area-selective deposition; printable electronics; PERFORMANCE; ZNO; TRANSISTORS; DIOXIDE; FILMS; FLOW; DFT;
D O I
10.1021/acsnano.0c07297
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is an increasing interest in additive nanomanufacturing processes, which enable customizable patterning of functional materials and devices on a wide range of substrates. However, there are relatively few techniques with the ability to directly 3D print patterns of functional materials with sub-micron resolution. In this study, we demonstrate the use of additive electrohydrodynamic jet (e-jet) printing with an average line width of 312 nm, which acts as an inhibitor for area-selective atomic layer deposition (AS-ALD) of a range of metal oxides. We also demonstrate subtractive e-jet printing with solvent inks that dissolve polymer inhibitor layers in specific regions, which enables localized AS-ALD within those regions. The chemical selectivity and morphology of e-jet patterned polymers towards binary and ternary oxides of ZnO, Al2O3, and SnO2 were quantified using X-ray photoelectron spectroscopy, atomic force microscopy, and Auger electron spectroscopy. This approach enables patterning of functional oxide semiconductors, insulators, and transparent conducting oxides with tunable composition, angstrom-scale control of thickness, and sub -gm resolution in the x-y plane. Using a combination of additive and subtractive e-jet printing with AS-ALD, a thin-film transistor was fabricated using zinc-tin-oxide for the semiconductor channel and aluminum-doped zinc oxide as the source and drain electrical contacts. In the future, this technique can be used to print integrated electronics with sub-micron resolution on a variety of substrates.
引用
收藏
页码:17262 / 17272
页数:11
相关论文
共 71 条
[1]   High-Performance Zinc Tin Oxide TFTs with Active Layers Deposited by Atomic Layer Deposition [J].
Allemang, Christopher R. ;
Cho, Tae H. ;
Trejo, Orlando ;
Ravan, Shantam ;
Rodriguez, Robin E. ;
Dasgupta, Neil P. ;
Peterson, Rebecca L. .
ADVANCED ELECTRONIC MATERIALS, 2020, 6 (07)
[2]   Role of Surface Termination in Atomic Layer Deposition of Silicon Nitride [J].
Ande, Chaitanya Krishna ;
Knoops, Harm C. M. ;
de Peuter, Koen ;
van Drunen, Maarten ;
Elliott, Simon D. ;
Kessels, Wilhelmus M. M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (18) :3610-3614
[3]   High-Performance Thin-Film Transistors of Quaternary Indium-Zinc-Tin Oxide Films Grown by Atomic Layer Deposition [J].
Baek, In-Hwan ;
Pyeon, Jung Joon ;
Han, Seong Ho ;
Lee, Ga-Yeon ;
Choi, Byung Joon ;
Han, Jeong Hwan ;
Chung, Taek-Mo ;
Hwang, Cheol Seong ;
Kim, Seong Keun .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (16) :14892-14901
[4]   Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films [J].
Banerjee, Parag ;
Lee, Won-Jae ;
Bae, Ki-Ryeol ;
Lee, Sang Bok ;
Rubloff, Gary W. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (04)
[5]   Atomic Layer Deposition of Bismuth Vanadate Core-Shell Nanowire Photoanodes [J].
Bielinski, Ashley R. ;
Lee, Sudarat ;
Brancho, James J. ;
Esarey, Samuel L. ;
Gayle, Andrew J. ;
Kazyak, Eric ;
Sun, Kai ;
Bartlett, Bart M. ;
Dasgupta, Neil P. .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3221-3227
[6]   Area-Selective Atomic Layer Deposition Assisted by Self-Assembled Monolayers: A Comparison of Cu, Co, W, and Ru [J].
Bobb-Semple, Dara ;
Nardi, Katie Lynn ;
Draeger, Nerissa ;
Hausmann, Dennis M. ;
Bent, Stacey F. .
CHEMISTRY OF MATERIALS, 2019, 31 (05) :1635-1645
[7]   Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification [J].
Chen, R ;
Kim, H ;
McIntyre, PC ;
Porter, DW ;
Bent, SF .
APPLIED PHYSICS LETTERS, 2005, 86 (19) :1-3
[8]   Investigation of self-assembled monolayer resists for hafnium dioxide atomic layer deposition [J].
Chen, R ;
Kim, H ;
McIntyre, PC ;
Bent, SF .
CHEMISTRY OF MATERIALS, 2005, 17 (03) :536-544
[9]   Enhanced Interfacial Toughness of Thermoplastic-Epoxy Interfaces Using ALD Surface Treatments [J].
Chen, Yuxin ;
Ginga, Nicholas J. ;
LePage, William S. ;
Kazyak, Eric ;
Gayle, Andrew J. ;
Wang, Jing ;
Rodriguez, Robin E. ;
Thouless, M. D. ;
Dasgupta, Neil P. .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (46) :43573-43580
[10]   Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Area-Selective Atomic Layer Deposition for the Oxygen Reduction Reaction [J].
Cheng, Niancai ;
Banis, Mohammad Norouzi ;
Liu, Jian ;
Riese, Adam ;
Li, Xia ;
Li, Ruying ;
Ye, Siyu ;
Knights, Shanna ;
Sun, Xueliang .
ADVANCED MATERIALS, 2015, 27 (02) :277-281