ON THE DYNAMICS OF FLOWS ON COMPACT METRIC SPACES

被引:2
作者
Choy, Jaeyoo [2 ]
Chu, Hahng-Yun [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[2] Kyungpook Natl Univ, Dept Math, Taegu 702701, South Korea
关键词
Envelope; flow; omega-limit sets; TOPOLOGICAL DYNAMICS; SEMIGROUP;
D O I
10.3934/cpaa.2010.9.103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a (generalized) envelope of flows on compact metric spaces. This partly generalizes the notion of envelope of maps in discrete geometry ([3]). We clarify a certain distinction between the flow geometry and the discrete one, which is explained by showing that any co-limit set for an envelope of flows is an empty set, whereas it is nonempty in general in discrete case.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 10 条
[1]  
Akin E., 1998, CONT MATH, V215, P7581
[2]  
Auslander J., 1988, MATH STUDIES, V153
[3]   Functional envelope of a dynamical system [J].
Auslander, Joseph ;
Kolyada, Sergii ;
Snoha, L'ubomir .
NONLINEARITY, 2007, 20 (09) :2245-2269
[4]  
Choy J, 2009, KYUNGPOOK MATH J, V49, P573
[5]   The topological dynamics of semigroup actions [J].
Ellis, DB ;
Ellis, R ;
Nerurkar, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (04) :1279-1320
[6]   THE ENVELOPING SEMIGROUP OF PROJECTIVE FLOWS [J].
ELLIS, R .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 :635-660
[7]   WEAKLY ALMOST PERIODIC FLOWS [J].
ELLIS, R ;
NERURKAR, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 313 (01) :103-119
[8]  
Ellis R., 1960, T AM MATH SOC, V94, P272, DOI DOI 10.1090/S0002-9947-1960-0123636-3
[9]   Enveloping semigroups in topological dynamics [J].
Glasner, Eli .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (11) :2344-2363
[10]  
Vries J, 1993, ELEMENTS TOPOLOGICAL