Algebraic differential independence regarding the Riemann ζ-function and the Euler Γ-function

被引:4
作者
Han, Qi [1 ]
Liu, Jingbo [1 ]
机构
[1] Texas A&M Univ, Dept Math, San Antonio, TX 78224 USA
关键词
Algebraic differential equations; The Riemann zeta-function; The Euler gamma-function; EQUATIONS;
D O I
10.1016/j.jnt.2019.12.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that zeta cannot be a solution to any nontrivial algebraic differential equation whose coefficients are polynomials in Gamma,Gamma((n)) and Gamma((ln)) over the ring of polynomials in C, where l, n >= 1 are positive integers. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 121
页数:13
相关论文
共 16 条
[1]   NOTE ON HOLDERS THEOREM CONCERNING GAMMA FUNCTION [J].
BANK, SB ;
KAUFMAN, RP .
MATHEMATISCHE ANNALEN, 1978, 232 (02) :115-120
[2]   Some uniqueness results related to L-functions [J].
Han Q. .
Bollettino dell'Unione Matematica Italiana, 2017, 10 (4) :503-515
[3]  
Hilbert D., 1902, Bull Amer. Math Soc, V8, P437, DOI DOI 10.1090/S0002-9904-1902-00923-3
[4]  
Holder O, 1887, MATH ANN, V28, P1, DOI [10.1007/BF02430507, DOI 10.1007/BF02430507]
[5]   Algebraic differential equations with functional coefficients concerning ζ and Γ [J].
Li, Bao Qin ;
Ye, Zhuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) :1456-1464
[6]   Algebraic Differential Equations Concerning The Riemann Zeta Function and The Euler Gamma Function [J].
Li, Bao Qin ;
Ye, Zhuan .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (04) :1405-1415
[7]  
Li BQ, 2010, P AM MATH SOC, V138, P2071
[8]   On differential independence of the Riemann zeta function and the Euler gamma function [J].
Li, Bao Qin ;
Ye, Zhuan .
ACTA ARITHMETICA, 2008, 135 (04) :333-337
[9]   Differential independence of Γ and ζ [J].
Markus, Lawrence .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2007, 19 (01) :133-154
[10]  
Mordykhai-Boltovskoi D., 1914, Izv Politekh Inst Warsaw, V2, P1