The higher K-theory of real curves

被引:8
作者
Pedrini, C
Weibel, C
机构
[1] Univ Genoa, Dept Math, I-16146 Genoa, Italy
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
来源
K-THEORY | 2002年 / 27卷 / 01期
关键词
real curve; algebraic K-theory; motivic cohomology;
D O I
10.1023/A:1020865906645
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If X is a smooth curve defined over the real numbers R, we show that K-n (X) is the sum of a divisible group and a finite elementary Abelian 2-group when n greater than or equal to 2. We determine the torsion subgroup of K-n (X), which is a finite sum of copies of Q/Z and Z/2, only depending on the topological invariants of X( R) and X( C), and show that (for n greater than or equal to 2) these torsion subgroups are periodic of order 8.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 42 条
[1]   K2 OF QUATERNION ALGEBRAS [J].
ALPERIN, RC ;
DENNIS, RK .
JOURNAL OF ALGEBRA, 1979, 56 (01) :262-273
[2]  
[Anonymous], 1971, LECT NOTES MATH, V225
[3]   K-THEORY AND REALITY [J].
ATIYAH, MF .
QUARTERLY JOURNAL OF MATHEMATICS, 1966, 17 (68) :367-&
[4]   ALGEBRAIC CYCLES AND HIGHER K-THEORY [J].
BLOCH, S .
ADVANCES IN MATHEMATICS, 1986, 61 (03) :267-304
[5]  
CILIBERTO C, 1997, LECT REAL GEOMETRY, P168
[6]   Zero-cycles and cohomology on real algebraic varieties [J].
ColliotThelene, JL ;
Scheiderer, C .
TOPOLOGY, 1996, 35 (02) :533-559
[7]   REAL COMPONENTS OF ALGEBRAIC-VARIETIES AND ETALE COHOMOLOGY [J].
COLLIOTTHELENE, JL ;
PARIMALA, R .
INVENTIONES MATHEMATICAE, 1990, 101 (01) :81-99
[8]   ETALE HOMOTOPY TYPE OF VARIETIES OVER R [J].
COX, DA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 76 (01) :17-22
[9]   BRAUER GROUP OF A REAL CURVE [J].
DEMEYER, FR ;
KNUS, MA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 57 (02) :227-232
[10]  
FRIEDLANDER E, 1999, IN PRESS ANN SCI ECO