Modeling and Optimization for the Dynamic Performance of Vertical-Axis Wind Turbine Composite Blades

被引:8
|
作者
Ghoneam, Sobhy [1 ]
Hamada, Ahmed [1 ]
Sherif, Taha [1 ]
机构
[1] Menoufia Univ, Fac Engn, Dept Prod Engn & Mech Design, Menoufia 32511, Egypt
关键词
vertical-axis wind turbine; composite material blades; finite element analysis; modeling; optimization; clean energy; materials; renewable; simulation; wind; wind turbine; LEADING-EDGE SERRATIONS; AERODYNAMIC PERFORMANCE; SAVONIUS; DESIGN; IMPROVEMENT; CFD;
D O I
10.1115/1.4048159
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article presents a study of modeling and optimization for the dynamic performance of wind turbine composite material blades and investigates the effects of composite material stacking sequence in addition to some design parameters such as twist angle and aspect ratio (AR) on the whole wind turbine performance. The two-stage Savonius rotor VAWT composite blades are designed and simulated within the solidworks simulation 2020 package. Modified mechanical parameters are introduced to improve the scalability, reliability, and accuracy of the developed models. The lamination plate theory is used to compute the equivalent mechanical properties for each composite blade. The finite element analyses (FEAs) are conducted to investigate the dynamic characteristics (frequency and associated mode shapes) of wind turbine models. Taguchi tools such as analysis of variance (ANOVA), signal-to-noise (S/N) ratio and additive model were employed to evaluate and obtain the significant factors and determine the optimal combination levels of wind turbine design parameters. Mathematical modeling based on response surface methodology (RSM) has been established. The analysis of results shows that the aspect ratio with a contribution of 48.08% had the dominant impact on the rotor performance followed by the stacking sequence and twist angle.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] NUMERICAL SIMULATIONS OF VERTICAL-AXIS WIND TURBINE BLADES
    Plourde, B. D.
    Abraham, J. P.
    Mowry, G. S.
    Minkowycz, W. J.
    PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C, 2012, : 2165 - 2172
  • [2] WIND-TUNNEL TESTS OF VERTICAL-AXIS WIND TURBINE BLADES
    Plourde, B. D.
    Abraham, J. P.
    Mowry, G. S.
    Minkowycz, W. J.
    PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C, 2012, : 2173 - 2179
  • [3] VIBRATIONAL ANALYSIS OF VERTICAL-AXIS WIND-TURBINE BLADES
    Afzali, Fatemeh
    Kapucu, Onur
    Feeny, Brian F.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2016, VOL 8, 2016,
  • [4] NONLINEAR STRESS ANALYSIS OF VERTICAL-AXIS WIND TURBINE BLADES
    WEINGARTEN, LI
    NICKELL, RE
    JOURNAL OF ENGINEERING FOR INDUSTRY-TRANSACTIONS OF THE ASME, 1975, 97 (04): : 1234 - 1237
  • [5] Research on the Performance of a Vertical-Axis Wind Turbine With Helical Blades by Detached Eddy Simulation
    Liu, Xiaolan
    Chen, Qian
    Yang, Bo
    Song, Moru
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (03):
  • [6] VERTICAL-AXIS WIND TURBINE
    MAYS, ID
    CME-CHARTERED MECHANICAL ENGINEER, 1987, 34 (7-8): : 17 - 17
  • [7] Theoretical Modeling of Vertical-Axis Wind Turbine Wakes
    Abkar, Mahdi
    ENERGIES, 2019, 12 (01)
  • [8] Fatigue-Life Prediction of the Optimized Savonius Vertical-Axis Wind Turbine Composite Blades
    Ghoneam, Sobhy M.
    Hamada, Ahmed A.
    Sherif, Taha S.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (07):
  • [9] Greenberg's Force Prediction for Vertical-Axis Wind Turbine Blades
    Bensason, David
    Le Fouest, Sebastien
    Young, Anna
    Mulleners, Karen
    AIAA JOURNAL, 2022, 60 (07) : 4467 - 4470
  • [10] Calculation of the aerodynamic performance of the vertical-axis wind turbine
    Xu, Xia
    Zhou, Zhenggui
    Qiu, Ming
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2012, 33 (02): : 197 - 203