Molecular Imaging Into In Vivo Interaction of HIF-1α and HIF-2α with ARNT

被引:9
作者
Konietzny, Rebecca [1 ]
Koenig, Anna [1 ]
Wotzlaw, Christoph [1 ]
Bernadini, Andre [1 ]
Berchner-Pfannschmidt, Utta [1 ]
Fandrey, Joachim [1 ]
机构
[1] Univ Duisburg Essen, Inst Physiol, D-45147 Essen, Germany
来源
HYPOXIA AND CONSEQUENCES FROM MOLECULE TO MALADY | 2009年 / 1177卷
关键词
fluorescence resonance energy transfer (FRET); green fluorescence protein; fusion proteins; hypoxia-inducible factor (HIF); in vivo imaging; Gateway (TM) cloning; U2OS cells; FRET; HIF-1;
D O I
10.1111/j.1749-6632.2009.05029.x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Fluorescence resonance energy transfer (FRET) combined with confocal laser microscopy is a powerful tool to analyze protein-protein interaction in vivo. We have applied this combination to study the assembly of the hypoxia-inducible factor (HIF) complex in living cells under hypoxic conditions. In hypoxia, the basic helix-loop-helix/Period/ARNT/Single-minded (PAS) proteins HIF-1 alpha and HIF-2 alpha accumulate and are translocated into the nucleus. Here, HIF-1 alpha and HIF-2 alpha dimerize with HIF-1 beta, also known as aryl hydrocarbon receptor nuclear translocator (ARNT), to form HIF-1/HIF-2 complexes, which control the expression of specific target genes. Therefore, a new Java-based analyzing program was developed at our institute to calculate the nanometer distance between alpha and beta subunits of the transcriptionally active HIF-1/-2 complex bound to DNA. Fusion proteins of HIF subunits and variants of green fluorescent proteins (cyan and yellow fluorescent proteins) were expressed in living cells and protein-protein interactions were imaged in vivo by means of FRET.
引用
收藏
页码:74 / 81
页数:8
相关论文
共 19 条
  • [1] Oxygen Sensors at the Crossroad of Metabolism
    Aragones, Julian
    Fraisl, Peter
    Baes, Myriam
    Carmeliet, Peter
    [J]. CELL METABOLISM, 2009, 9 (01) : 11 - 22
  • [2] Visualization of the three-dimensional organization of hypoxia-inducible factor-1α and interacting cofactors in subnuclear structures
    Berchner-Pfannschmidt, U
    Wotzlaw, C
    Merten, E
    Acker, H
    Fandrey, J
    [J]. BIOLOGICAL CHEMISTRY, 2004, 385 (3-4) : 231 - 237
  • [3] BERNARDINI A, 2009, WORLD C MED PHYS BIO
  • [4] FRET or no FRET: A quantitative comparison
    Berney, C
    Danuser, G
    [J]. BIOPHYSICAL JOURNAL, 2003, 84 (06) : 3992 - 4010
  • [5] HIF at a glance
    Brahimi-Horn, M. Christiane
    Pouyssegur, Jacques
    [J]. JOURNAL OF CELL SCIENCE, 2009, 122 (08) : 1055 - 1057
  • [6] Regulating cellular oxygen sensing by hydroxylation
    Fandrey, Joachim
    Gorr, Thomas A.
    Gassmann, Max
    [J]. CARDIOVASCULAR RESEARCH, 2006, 71 (04) : 642 - 651
  • [7] *ZWISCHENMOLEKULARE ENERGIEWANDERUNG UND FLUORESZENZ
    FORSTER, T
    [J]. ANNALEN DER PHYSIK, 1948, 2 (1-2) : 55 - 75
  • [8] CLONING OF A FACTOR REQUIRED FOR ACTIVITY OF THE AH (DIOXIN) RECEPTOR
    HOFFMAN, EC
    REYES, H
    CHU, FF
    SANDER, F
    CONLEY, LH
    BROOKS, BA
    HANKINSON, O
    [J]. SCIENCE, 1991, 252 (5008) : 954 - 958
  • [9] The N-terminal Transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1α and HIF-2α
    Hu, Cheng-Jun
    Sataur, Aneesa
    Wang, Liyi
    Chen, Hongqing
    Simon, M. Celeste
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2007, 18 (11) : 4528 - 4542
  • [10] Improvement of a FRET-based indicator for cAMP by linker design and stabilization of donor-acceptor interaction
    Lissandron, V
    Terrin, A
    Collini, M
    D'alfonso, L
    Chirico, G
    Pantano, S
    Zaccolo, M
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2005, 354 (03) : 546 - 555