Explicit Salem sets in R2

被引:11
|
作者
Hambrook, Kyle [1 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Hausdorff dimension; Fourier dimension; Salem sets; FOURIER DIMENSION; THEOREM; CONSTRUCTION;
D O I
10.1016/j.aim.2017.03.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct explicit (i.e., non-random) examples of Salem sets in R-2 of dimension s for every 0 <= s <= 2. In particular, we give the first explicit examples of Salem sets in R-2 of dimension 0 < s < 1. This extends a theorem of Kaufman. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:634 / 648
页数:15
相关论文
共 50 条
  • [41] An improved bound for the dimension of (α, 2α)-Furstenberg sets
    Hera, Kornelia
    Shmerkin, Pablo
    Yavicoli, Alexia
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (01) : 295 - 322
  • [42] On the (1/2,+)-caloric capacity of Cantor sets
    Hernandez, Joan
    ANNALES FENNICI MATHEMATICI, 2024, 49 (01): : 211 - 239
  • [43] On some non-linear projections of self-similar sets in R3
    Barany, Balazs
    FUNDAMENTA MATHEMATICAE, 2017, 237 (01) : 83 - 100
  • [44] (n, 2)-sets have full Hausdorff dimension
    Mitsis, T
    REVISTA MATEMATICA IBEROAMERICANA, 2004, 20 (02) : 381 - 393
  • [45] Constructions of difference sets in nonabelian 2-groups
    Applebaum, T.
    Clikeman, J.
    Davis, J. A.
    Dillon, J. F.
    Jedwab, J.
    Rabbani, T.
    Smith, K.
    Yolland, W.
    ALGEBRA & NUMBER THEORY, 2023, 17 (02) : 359 - 396
  • [46] The Construction of general Type-2 Fuzzy Sets
    Hu, Dan
    Lin, Tsau Young
    Fan, Qiang
    2013 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC), 2013, : 141 - 146
  • [47] Hausdorff dimension 2 for Julia sets of quadratic polynomials
    Heinemann, SM
    Stratmann, BO
    MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (03) : 571 - 583
  • [48] Hausdorff dimension 2 for Julia sets of quadratic polynomials
    Stefan-M. Heinemann
    Bernd O. Stratmann
    Mathematische Zeitschrift, 2001, 237 : 571 - 583
  • [49] Isospectral interactions of the potential V(r) = αr2d-2-βrd-2
    Bera, PK
    INDIAN JOURNAL OF PHYSICS, 2005, 79 (08) : 887 - 892
  • [50] Inclusion and subsethood measure for interval-valued fuzzy sets and for continuous type-2 fuzzy sets
    Takac, Zdenko
    FUZZY SETS AND SYSTEMS, 2013, 224 : 106 - 120