Explicit Salem sets in R2

被引:11
|
作者
Hambrook, Kyle [1 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Hausdorff dimension; Fourier dimension; Salem sets; FOURIER DIMENSION; THEOREM; CONSTRUCTION;
D O I
10.1016/j.aim.2017.03.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct explicit (i.e., non-random) examples of Salem sets in R-2 of dimension s for every 0 <= s <= 2. In particular, we give the first explicit examples of Salem sets in R-2 of dimension 0 < s < 1. This extends a theorem of Kaufman. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:634 / 648
页数:15
相关论文
共 50 条
  • [21] MULTIPLICITY OF SOLUTIONS OF DIRICHLET PROBLEMS ASSOCIATED WITH SECOND-ORDER EQUATIONS IN R2
    Dalbono, F.
    Rebelo, C.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 : 569 - 581
  • [22] Existence of weak solutions to a p-Laplacian system on the Sierpinski gasket on R2
    Souissi, Chouhaid
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (01):
  • [23] GLOBAL SOLUTIONS AND EXTERIOR DIRICHLET PROBLEM FOR MONGE-AMPERE EQUATION IN R2
    Bao, Jiguang
    Li, Haigang
    Zhang, Lei
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2016, 29 (5-6) : 563 - 582
  • [24] On Dirichlet problem and uniform approximation by solutions of second-order elliptic systems in R2
    Bagapsh, Astamur
    Fedorovskiy, Konstantin
    Mazalov, Maksim
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [25] TWOFOLD CANTOR SETS IN R
    Kamalutdinov, K. G.
    Tetenov, A. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 801 - 814
  • [26] On the intersections of the Besicovitch sets and the Erdös–Rényi sets
    Mengjie Zhang
    Li Peng
    Monatshefte für Mathematik, 2019, 189 : 179 - 189
  • [27] FINITE-DIMENSIONAL APPROXIMATION AND NON-SQUEEZING FOR THE CUBIC NONLINEAR SCHRODINGER EQUATION ON R2
    Killip, Rowan
    Visan, Monica
    Zhang, Xiaoyi
    AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (02) : 613 - 680
  • [28] A Continuous Transition from e-Sets to R-sets and Beyond
    Ding, Jie
    Heittokangas, Janne
    Wen, Zhi-Tao
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)
  • [29] On the intersections of the Besicovitch sets and exceptional sets in the Erdős–Rényi limit theorem
    J. Li
    M. Wu
    Acta Mathematica Hungarica, 2019, 158 : 132 - 144
  • [30] MINIMAL HULLS OF COMPACT SETS IN R3
    Drnovsek, Barbara Drinovec
    Forstneric, Franc
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (10) : 7477 - 7506