Local Control Lyapunov Functions for Constrained Linear Discrete-Time Systems: The Minkowski Algebra Approach

被引:4
作者
Rakovic, Sasa V. [1 ,2 ]
Baric, Miroslav [3 ]
机构
[1] Otto Von Guericke Univ, Inst Automat Engn, Magdeburg, Germany
[2] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[3] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
Constrained control; Lyapunov functions; stability analysis; ROBUST-CONTROL; INVARIANT-SETS; STABILITY; FEEDBACK;
D O I
10.1109/TAC.2009.2031579
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This technical note utilizes Minkowski algebra of convex sets to characterize a family of local control Lyapunov functions for constrained linear discrete-time systems. Local control Lyapunov functions are induced by parametrized contractive invariant sets. Underlying contractive invariant sets belong to a family of Minkowski decomposable convex sets and are, in fact, parametrized by a basic shape set and linear transformations of system matrices and a set of design matrices. Corresponding local control Lyapunov functions can be detected by solving a single, tractable, convex optimization problem which in case of polyhedral constraints reduces to a single linear program. The a priori complexity estimate of the characterized local control Lyapunov function is provided for some practically relevant cases. An illustrative example and relevant numerical experience are also reported.
引用
收藏
页码:2686 / 2692
页数:7
相关论文
共 27 条
[1]  
[Anonymous], ENCY MATH ITS APPL
[2]  
[Anonymous], 1976, STABILITY DYNAMICAL
[3]  
[Anonymous], 1982, Stability of Motion
[4]   STABILIZATION WITH RELAXED CONTROLS [J].
ARTSTEIN, Z .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (11) :1163-1173
[5]   Feedback and invariance under uncertainty via set-iterates [J].
Artstein, Zvi ;
Rakovic, Sasa V. .
AUTOMATICA, 2008, 44 (02) :520-525
[6]  
Aubin J., 1991, SYSTEMS AND CONTROL, DOI 10.1007/978-0-8176-4910-4
[7]  
Bank B., 1983, Nonlinear Parametric Optimization
[9]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[10]   NONQUADRATIC LYAPUNOV FUNCTIONS FOR ROBUST-CONTROL [J].
BLANCHINI, F .
AUTOMATICA, 1995, 31 (03) :451-461