The functional nonparametric model and application to spectrometric data

被引:183
作者
Ferraty, F [1 ]
Vieu, P
机构
[1] Univ Toulouse 3, UMR C5583, Lab Stat & Probabil, F-31062 Toulouse, France
[2] Univ Toulouse 2, Equipe GRIMM, F-31058 Toulouse, France
关键词
dimension reduction; functional data; nonparametric estimate; regression model; spectrometric data;
D O I
10.1007/s001800200126
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this paper is to present a nonparametric regression model with scalar response when the explanatory variables are curves. In this context, the crucial problem of dimension reduction is overriden by the use of an implicit fractal dimension hypothesis. For such a functional nonparametric regression model we introduce and study both practical and theoretical aspects of some kernel type estimator. After a simulation study, it is shown how this procedure is well adapted to some spectrometric data set. Asymptotic results are described and in conclusion it turns out that this method combines advantages of easy implementation and good mathematical properties.
引用
收藏
页码:545 / 564
页数:20
相关论文
共 27 条
  • [1] Becker R. A., 1988, NEW S LANGUAGE
  • [2] BESSE P, 1997, COMPUTATIONAL STAT D, V24, P225
  • [3] BESSE P, 1999, IN PRESS SCAND J STA
  • [4] BOULARAN J, 1995, COMPUTATION STAT, V10, P285
  • [5] Bayesian wavelet regression on curves with application to a spectroscopic calibration problem
    Brown, PJ
    Fearn, T
    Vannucci, M
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) : 398 - 408
  • [6] Functional linear model
    Cardot, H
    Ferraty, F
    Sarda, P
    [J]. STATISTICS & PROBABILITY LETTERS, 1999, 45 (01) : 11 - 22
  • [7] de Boor C., 1978, PRACTICAL GUIDE SPLI
  • [8] DENHAM MC, 1993, J ROY STAT SOC C, V42, P515
  • [9] FERRATY F, 2001, 200103 LAB STAT PROB
  • [10] Ferreira CA, 2000, IEEE IND APPL MAG, V6, P6