Modelling the quality of enantiomeric separations based on molecular descriptors

被引:10
作者
Caetano, S. [1 ]
Heyden, Y. Vander [1 ]
机构
[1] Vrije Univ Brussels, Dept Analyt Chem & Pharmaceut Technol, FABI, B-1090 Brussels, Belgium
关键词
enantioseparation; principal component analysis; projection pursuit; stepwise multiple linear regression; uninformative variable elimination by partial least squares; classification and regression trees;
D O I
10.1016/j.chemolab.2006.04.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper the selectivity and the resolution of enantiomeric separations are modelled. For each of the 50 molecules of the considered dataset, several molecular descriptors were calculated. The aim of this work is to determine whether it is possible to model the quality of the separations, based on the calculated descriptors. The chemometric methods used to explore and model the data were Principal Component Analysis, Projection Pursuit, Uninformative Variable Elimination by Partial Least Squares, Stepwise Multiple Linear Regression and Classification and Regression Trees. Stepwise Multiple Linear Regression gives the best models, both for selectivity and resolution, being the models able to predict the selectivity with an error lower than 4%, and the resolution with an error of 7%. The results seem to demonstrate that it is possible to predict quantitatively the quality of enantiomeric separations of related compounds on a given chromatographic system. (c) 2006 Elsevier B.V, All rights reserved.
引用
收藏
页码:46 / 55
页数:10
相关论文
共 38 条
[1]   Prediction of chiral chromatographic separations using combined multivariate regression and neural networks [J].
Booth, TD ;
Azzaoui, K ;
Wainer, IW .
ANALYTICAL CHEMISTRY, 1997, 69 (19) :3879-3883
[2]  
Breiman L., 1998, CLASSIFICATION REGRE
[3]   Prediction of enantio selectivity using chirality codes and Classification and Regression Trees [J].
Caetano, S ;
Aires-De-Sousa, J ;
Daszykowski, M ;
Heyden, YV .
ANALYTICA CHIMICA ACTA, 2005, 544 (1-2) :315-326
[4]   Exploring and modelling the responses of electrospray and atmospheric pressure chemical ionization techniques based on molecular descriptors [J].
Caetano, S ;
Decaestecker, T ;
Put, R ;
Daszykowski, M ;
Van Bocxlaer, J ;
Vander Heyden, Y .
ANALYTICA CHIMICA ACTA, 2005, 550 (1-2) :92-106
[5]   Elimination of uninformative variables for multivariate calibration [J].
Centner, V ;
Massart, DL ;
deNoord, OE ;
deJong, S ;
Vandeginste, BM ;
Sterna, C .
ANALYTICAL CHEMISTRY, 1996, 68 (21) :3851-3858
[6]   Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors [J].
Consonni, V ;
Todeschini, R ;
Pavan, M .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (03) :682-692
[7]   Classification and regression trees-studies of HIV reverse transcriptase inhibitors [J].
Daszykowski, M ;
Walczak, B ;
Xu, QS ;
Daeyaert, F ;
de Jonge, MR ;
Heeres, J ;
Koymans, LMH ;
Lewi, PJ ;
Vinkers, HM ;
Janssen, PA ;
Massart, DL .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (02) :716-726
[8]   Projection methods in chemistry [J].
Daszykowski, M ;
Walczak, B ;
Massart, DL .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2003, 65 (01) :97-112
[9]  
De'ath G, 2000, ECOLOGY, V81, P3178, DOI 10.2307/177409
[10]   Use of topological descriptors in chromatographic chiral separations [J].
deJulianOrtiz, JV ;
GarciaDomenech, R ;
Alvarez, JG ;
Roca, RS ;
GarciaMarch, FJ ;
AntonFos, GM .
JOURNAL OF CHROMATOGRAPHY A, 1996, 719 (01) :37-44