Random random walks on Z(2)(d)*

被引:18
作者
Wilson, DB
机构
[1] University of California, 387 Soda Hall, Berkeley
关键词
random walk; hypercube; mixing time; threshold;
D O I
10.1007/s004400050116
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider random walks on classes of graphs defined on the d-dimensional binary cube Z(2)(d) by placing edges on n randomly chosen parallel classes of vectors. The mixing time of a graph is the number of steps of a random walk before the walk forgets where it started, and reaches a random location. In this paper we resolve a question of Diaconis by finding exact expressions for this mixing time that hold for all n > d and almost all choices of vector classes. This result improves a number of previous bounds. Our method, which has application to similar problems on other Abelian groups, uses the concept of a universal hash function, from computer science.
引用
收藏
页码:441 / 457
页数:17
相关论文
共 19 条
[1]  
ALDOUS D, 1985, 231 STANF U DEP STAT
[2]   RANDOM CAYLEY-GRAPHS AND EXPANDERS [J].
ALON, N ;
ROICHMAN, Y .
RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (02) :271-284
[3]   TIME TO REACH STATIONARITY IN THE BERNOULLI LAPLACE DIFFUSION-MODEL [J].
DIACONIS, P ;
SHAHSHAHANI, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (01) :208-218
[4]  
Diaconis P., 1988, GROUP REPRESENTATION
[5]  
Diaconis P., 1990, RANDOM STRUCT ALGOR, V1, P51
[6]  
DIACONIS P, 1993, COMMUNICATION
[7]  
Diaconis P., 1991, Ann. Appl. Probab., P36
[8]  
Dou C, 1996, ANN PROBAB, V24, P987
[9]  
DOU CCZ, 1992, THESIS MIT
[10]  
GREENHALGH AS, 1993, UNPUB MODEL RANDOM R