Algorithms for on-line strip packing

被引:37
作者
Csirik, J
Woeginger, GJ
机构
[1] GRAZ TECH UNIV,INST MATH B,A-8010 GRAZ,AUSTRIA
[2] UNIV SZEGED,DEPT COMP SCI,H-6720 SZEGED,HUNGARY
关键词
analysis of algorithms; combinatorial problems; on-line algorithms; competitive analysis; worst case analysis; strip packing;
D O I
10.1016/S0020-0190(97)00120-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the strip packing problem, the goal is to pack a set of rectangles into a vertical strip of unit width so as to minimize the total height of the strip needed. For the on-line version of this problem, Baker and Schwarz introduced the class of so-called shelf algorithms. One of these shelf algorithms, FFS, is the current champion for on-line strip packing. The asymptotic worst case ratio of FFS can be made arbitrarily close to 1.7. We show that no shelf algorithm for on-line strip packing can have an asymptotic worst case ratio better than h(infinity) approximate to 1.69103. Moreover, we introduce and analyze another on-line shelf algorithm whose asymptotic worst case ratio comes arbitrarily close to h(infinity). (C) 1997 Elsevier Science B.V.
引用
收藏
页码:171 / 175
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]  
Baker B.S., 1982, ACTA INFORM, V8, P207
[3]   ORTHOGONAL PACKINGS IN 2 DIMENSIONS [J].
BAKER, BS ;
COFFMAN, EG ;
RIVEST, RL .
SIAM JOURNAL ON COMPUTING, 1980, 9 (04) :846-855
[4]   A 5-4 ALGORITHM FOR TWO-DIMENSIONAL PACKING [J].
BAKER, BS ;
BROWN, DJ ;
KATSEFF, HP .
JOURNAL OF ALGORITHMS, 1981, 2 (04) :348-368
[5]   SHELF ALGORITHMS FOR TWO-DIMENSIONAL PACKING PROBLEMS [J].
BAKER, BS ;
SCHWARZ, JS .
SIAM JOURNAL ON COMPUTING, 1983, 12 (03) :508-525
[6]  
JOHNSON DS, 1974, SIAM J COMPUT, V3, P256
[7]   Approximate strip packing [J].
Kenyon, C ;
Remila, E .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :31-36
[8]   A SIMPLE ONLINE BIN-PACKING ALGORITHM [J].
LEE, CC ;
LEE, DT .
JOURNAL OF THE ACM, 1985, 32 (03) :562-572
[9]   IMPROVED BOUNDS FOR HARMONIC-BASED BIN PACKING ALGORITHMS [J].
RICHEY, MB .
DISCRETE APPLIED MATHEMATICS, 1991, 34 (1-3) :203-227
[10]   AN IMPROVED LOWER BOUND FOR ONLINE BIN PACKING ALGORITHMS [J].
VANVLIET, A .
INFORMATION PROCESSING LETTERS, 1992, 43 (05) :277-284