Representation of exact solution for the nonlinear Volterra-Fredholm integral equations

被引:31
作者
Cui, Minggen [1 ]
Du, Hong
机构
[1] Harbin Inst Technol, Dept Math, Shandong 264209, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[3] Heilongjiang Inst Sci & Technol, Dept Math & Mech, Harbin 150027, Heilongjiang, Peoples R China
关键词
nonlinear equation; nonlinear Volterra-Fredholm integral equation; reproducing kernel space;
D O I
10.1016/j.amc.2006.06.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the representation of the exact solution for the nonlinear Volterra-Fredholm integral equations will be obtained in the reproducing kernel space. The exact solution is given by the form of series. Its approximate solution is obtained by truncating the series and a new numerical approximate method is obtained. The error of the approximate solution is monotone deceasing in the sense of parallel to(.)parallel to(w21[a,b]). The intrinsic merit of the method given in the paper lies in its speedy convergence. In addition, it must be pointed out that additional conditions as linearization or unjustified assumptions are not required for nonlinear cases. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1795 / 1802
页数:8
相关论文
共 12 条
[1]  
Adomian G., 1994, SOLVING FRONTIER PRO
[2]   ON THE NUMERICAL-SOLUTION OF NONLINEAR VOLTERRA-FREDHOLM INTEGRAL-EQUATIONS BY COLLOCATION METHODS [J].
BRUNNER, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (04) :987-1000
[3]   NEW RESULTS FOR CONVERGENCE OF ADOMIAN METHOD APPLIED TO INTEGRAL-EQUATIONS [J].
CHERRUAULT, Y ;
SACCOMANDI, G ;
SOME, B .
MATHEMATICAL AND COMPUTER MODELLING, 1992, 16 (02) :85-93
[4]  
Guoqiang H., 1995, J COMPUT APPL MATH, V59, P49, DOI [10. 1016/0377-0427(94)00021-R, DOI 10.1016/0377-0427(94)00021-R]
[5]  
Hacia L, 1996, Z ANGEW MATH MECH, V76, P415
[6]  
Kanwal R.P., 1989, Int. J. Math. Educ. Sci. Technol., V20, P411
[7]   CONTINUOUS-TIME COLLOCATION METHODS FOR VOLTERRA-FREDHOLM INTEGRAL-EQUATIONS [J].
KAUTHEN, JP .
NUMERISCHE MATHEMATIK, 1989, 56 (05) :409-424
[8]   The exact solution for solving a class nonlinear operator equations in the reproducing kernel space [J].
Li, CL ;
Cui, MG .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (2-3) :393-399
[9]   A new computational method for Volterra-Fredholm integral equations [J].
Maleknejad, K ;
Hadizadeh, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (09) :1-8
[10]  
MALEKNEJAD K, 1994, J COMPUT MATH APPL, P339