Identification of Alzheimer's disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging

被引:86
作者
Bae, Jong Bin [1 ,2 ]
Lee, Subin [3 ]
Jung, Wonmo [4 ]
Park, Sejin [4 ]
Kim, Weonjin [4 ]
Oh, Hyunwoo [4 ]
Han, Ji Won [1 ,2 ]
Kim, Grace Eun [3 ]
Kim, Jun Sung [3 ]
Kim, Jae Hyoung [5 ]
Kim, Ki Woong [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Neuropsychiat, Bundang Hosp, Seongnam, South Korea
[2] Seoul Natl Univ, Dept Psychiat, Coll Med, Seoul, South Korea
[3] Seoul Natl Univ, Dept Brain & Cognit Sci, Coll Nat Sci, Seoul, South Korea
[4] VUNO Inc, Seoul, South Korea
[5] Seoul Natl Univ, Dept Radiol, Bundang Hosp, Seongnam, South Korea
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
MILD COGNITIVE IMPAIRMENT; DIAGNOSIS; MRI; DEMENTIA; CLASSIFICATION; VALIDATION;
D O I
10.1038/s41598-020-79243-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The classification of Alzheimer's disease (AD) using deep learning methods has shown promising results, but successful application in clinical settings requires a combination of high accuracy, short processing time, and generalizability to various populations. In this study, we developed a convolutional neural network (CNN)-based AD classification algorithm using magnetic resonance imaging (MRI) scans from AD patients and age/gender-matched cognitively normal controls from two populations that differ in ethnicity and education level. These populations come from the Seoul National University Bundang Hospital (SNUBH) and Alzheimer's Disease Neuroimaging Initiative (ADNI). For each population, we trained CNNs on five subsets using coronal slices of T1-weighted images that cover the medial temporal lobe. We evaluated the models on validation subsets from both the same population (within-dataset validation) and other population (between-dataset validation). Our models achieved average areas under the curves of 0.91-0.94 for within-dataset validation and 0.88-0.89 for between-dataset validation. The mean processing time per person was 23-24 s. The within-dataset and between-dataset performances were comparable between the ADNI-derived and SNUBH-derived models. These results demonstrate the generalizability of our models to different patients with different ethnicities and education levels, as well as their potential for deployment as fast and accurate diagnostic support tools for AD.
引用
收藏
页数:10
相关论文
共 42 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]  
Avants BB., 2009, Insight J, V2, P1, DOI DOI 10.54294/UVNHIN
[3]   Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks [J].
Basaia, Silvia ;
Agosta, Federica ;
Wagner, Luca ;
Canu, Elisa ;
Magnani, Giuseppe ;
Santangelo, Roberto ;
Filippi, Massimo .
NEUROIMAGE-CLINICAL, 2019, 21
[4]   CT AND MRI FINDINGS AMONG - AFRICAN-AMERICANS WITH ALZHEIMERS-DISEASE, VASCULAR DEMENTIA, AND STROKE WITHOUT DEMENTIA [J].
CHARLETTA, D ;
GORELICK, PB ;
DOLLEAR, TJ ;
FREELS, S ;
HARRIS, Y .
NEUROLOGY, 1995, 45 (08) :1456-1461
[5]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[8]   FreeSurfer [J].
Fischl, Bruce .
NEUROIMAGE, 2012, 62 (02) :774-781
[9]   CLINICAL-NEUROPATHOLOGICAL CORRELATIONS IN ALZHEIMERS-DISEASE AND RELATED DEMENTIAS [J].
GALASKO, D ;
HANSEN, LA ;
KATZMAN, R ;
WIEDERHOLT, W ;
MASLIAH, E ;
TERRY, R ;
HILL, R ;
LESSIN, P ;
THAL, LJ .
ARCHIVES OF NEUROLOGY, 1994, 51 (09) :888-895
[10]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410