Genome Editing: Revolutionizing the Crop Improvement

被引:12
|
作者
Saurabh, Satyajit [1 ,2 ]
机构
[1] Bihar State Seed & Organ Certificat Agcy, DNA Fingerprinting Lab, Patna 800001, Bihar, India
[2] Birla Inst Technol, Dept Bioengn, Ranchi 835215, Bihar, India
关键词
Genome editing; Modern Biotechnology; DNA repair; CRISPR; Cas; DCas9; TALEN; ZFN; Gene silencing; Crop improvement; Biosafety; GM regulation; SITE-DIRECTED MUTAGENESIS; POTATO SOLANUM-TUBEROSUM; RNA-GUIDED ENDONUCLEASE; ZINC-FINGER NUCLEASES; TARGETED MUTAGENESIS; PHYTOENE-DESATURASE; DROUGHT STRESS; TRAIT STACKING; RICE GENOME; GENE;
D O I
10.1007/s11105-021-01286-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Modern biotechnology is progressed to sequence-specific, site-directed, precise, and safe strategies for genetic manipulation. The genome-editing strategy is being proposed as one of the most promising tools for genomic study and crop improvement. The basic mechanism involved in genetic manipulations through programmable nucleases is recognition of target genomic loci and binding of effector DNA-binding domain (DBD), double-strand breaks (DSBs) in target DNA by the restriction endonucleases (FokI and Cas) and the repair of DSBs through homology-directed recombination (HDR) or non-homologous end joining (NHEJ). The less efficient and more precise HDR results in the replacement of nucleotides, whereas the more efficient and error-prone NHEJ results in the insertion or deletion of nucleotides. The genome-editing strategies like ZFN, TALEN, and CRISPR/Cas involved in genome editing are being employed to add the desirable trait(s) and remove the undesirable. The impact of gene editing application in crop improvement has proven it the next-generation tool to enhance agricultural productivity. The modifications in crop plants include biotic and abiotic stresses, nutritional improvements, alteration in phenotype, and other characters such as crafting male sterility, haploid production, and increase in yield. The repurposing of CRISPR applications by catalytically inactive Cas9 marks CRISPR as an indispensable tool for genome editing and beyond in biological research. However, the genome-edited plants may have unintended alteration(s) that create biosafety risks. The tools are eventually progressing for more accuracy and efficiency to ensure the safety of consumers and the environment. This article is an attempt to review these genome-editing strategies, the biochemistry attributed to application in crop improvement, and the associated challenges.
引用
收藏
页码:752 / 772
页数:21
相关论文
共 50 条
  • [1] Genome Editing: Revolutionizing the Crop Improvement
    Satyajit Saurabh
    Plant Molecular Biology Reporter, 2021, 39 : 752 - 772
  • [2] Genome editing for plant research and crop improvement
    Zhan, Xiangqiang
    Lu, Yuming
    Zhu, Jian-Kang
    Botella, Jose Ramon
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2021, 63 (01) : 3 - 33
  • [3] Genome editing technologies and their applications in crop improvement
    Mishra, Rukmini
    Zhao, Kaijun
    PLANT BIOTECHNOLOGY REPORTS, 2018, 12 (02) : 57 - 68
  • [4] Multiplex Genome-Editing Technologies for Revolutionizing Plant Biology and Crop Improvement
    Abdelrahman, Mohamed
    Wei, Zheng
    Rohila, Jai S. S.
    Zhao, Kaijun
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [5] Origin of the genome editing systems: application for crop improvement
    Viviani, Ambra
    Spada, Maria
    Giordani, Tommaso
    Fambrini, Marco
    Pugliesi, Claudio
    BIOLOGIA, 2022, 77 (12) : 3353 - 3383
  • [6] Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants
    Yadav, Rakesh Kumar
    Tripathi, Manoj Kumar
    Tiwari, Sushma
    Tripathi, Niraj
    Asati, Ruchi
    Chauhan, Shailja
    Tiwari, Prakash Narayan
    Payasi, Devendra K.
    LIFE-BASEL, 2023, 13 (07):
  • [7] Advancements in genome editing tools for genetic studies and crop improvement
    Ahmadikhah, Asadollah
    Zarabizadeh, Homa
    Nayeri, Shahnoush
    Abbasi, Mohammad Sadegh
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [8] A Revolution toward Gene-Editing Technology and Its Application to Crop Improvement
    Ahmar, Sunny
    Saeed, Sumbul
    Khan, Muhammad Hafeez Ullah
    Khan, Shahid Ullah
    Mora-Poblete, Freddy
    Kamran, Muhammad
    Faheem, Aroosha
    Maqsood, Ambreen
    Rauf, Muhammad
    Saleem, Saba
    Hong, Woo-Jong
    Jung, Ki-Hong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (16) : 1 - 28
  • [9] Genome editing for horticultural crop improvement
    Xu, Jiemeng
    Hua, Kai
    Lang, Zhaobo
    HORTICULTURE RESEARCH, 2019, 6
  • [10] Application of genome-editing technology in crop improvement
    Ni, Zhe
    Han, Qian
    He, Yong-Qiang
    Huang, Sheng
    CEREAL CHEMISTRY, 2018, 95 (01) : 35 - 48