Quantum dephasing and decay of classical correlation functions in chaotic systems

被引:4
作者
Sokolov, Valentin V.
Benenti, Giuliano
Casati, Giulio
机构
[1] Univ Insubria, Ctr Nonlinear & Complex Syst, I-22100 Como, Italy
[2] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
[3] CNISM, Milan, Italy
[4] Ist Nazl Fis Nucl, I-20133 Milan, Italy
[5] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 02期
关键词
D O I
10.1103/PhysRevE.75.026213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the dephasing induced by internal classical chaotic motion in the absence of any external environment. To this end an extension of fidelity for mixed states is introduced, which we name allegiance. Such a quantity directly accounts for quantum interference and is measurable in a Ramsey interferometry experiment. We show that in the semiclassical limit the decay of the allegiance is exactly expressed, due to the dephasing, in terms of an appropriate classical correlation function. Our results are derived analytically for the case of a nonlinear driven oscillator and then numerically confirmed for the kicked rotor model.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Quantum delta-kicked rotor: Experimental observation of decoherence [J].
Ammann, H ;
Gray, R ;
Shvarchuck, I ;
Christensen, N .
PHYSICAL REVIEW LETTERS, 1998, 80 (19) :4111-4115
[2]   Echo spectroscopy and quantum stability of trapped atoms [J].
Andersen, MF ;
Kaplan, A ;
Davidson, N .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[3]  
ANDERSEN MF, QUANTPH0404118, P32301
[4]  
[Anonymous], 2000, QUANTUM SIGNATURES C
[5]   Stability of classical chaotic motion under a system's perturbations [J].
Benenti, G ;
Casati, G ;
Veble, G .
PHYSICAL REVIEW E, 2003, 67 (05) :4
[6]   Quantum-classical correspondence in perturbed chaotic systems [J].
Benenti, G ;
Casati, G .
PHYSICAL REVIEW E, 2002, 65 (06)
[7]   State reconstruction of the kicked rotor [J].
Bienert, M ;
Haug, F ;
Schleich, WP ;
Raizen, MG .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :050403/1-050403/4
[8]   PHASE AND ANGLE VARIABLES IN QUANTUM MECHANICS [J].
CARRUTHERS, P ;
NIETO, MM .
REVIEWS OF MODERN PHYSICS, 1968, 40 (02) :411-+
[9]  
Casati G., 1995, QUANTUM CHAOS ORDER
[10]   Sensitivity of wave field evolution and manifold stability in chaotic systems [J].
Cerruti, NR ;
Tomsovic, S .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4-541034