Thin SiO2/a-Si:H/SiO2 multilayer insulators obtained by electron cyclotron resonance chemical vapor deposition at room temperature for possible application in non-volatile memories

被引:2
作者
Mateos, D. [1 ]
Diniz, J. A. [2 ]
Nedev, N. [1 ]
Munoz, S. N. M. [3 ]
Curiel, M. [1 ]
Mederos, M. [2 ]
Valdez, B. [1 ]
Montero, G. [1 ]
机构
[1] Univ Autonoma Baja California, Inst Ingn, Blvd Benito Juarez S-N, Mexicali 21280, Baja California, Mexico
[2] Univ Estadual Campinas, Ctr Semicond Components, Rua Joao Pandia Calogeras 90, BR-13083870 Campinas, SP, Brazil
[3] Fed Univ ABC, Rua Santa Adelia 166, BR-09210170 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Electron cyclotron resonance chemical vapor deposition; Multilayer; Gate dielectrics; Non-volatile memory; Amorphous hydrogenated silicon; SILICON-NITRIDE; DENSITY;
D O I
10.1016/j.tsf.2017.03.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we present electrical and morphological characterization of thin multilayer structures, SiO2/a-Si:H/SiO2, with possible applications in non-volatile memories devices. All films were obtained by Electron Cyclotron Resonance Chemical Vapor Deposition technique at room temperature. To induce structural changes in the amorphous silicon layer, the gate stacks were subjected to high temperature furnace annealing at 800 degrees C and 1100 degrees C. Three-layer MOS structures were patterned by lithography and subjected to a sintering process in forming gas for 20 min. The structures annealed at high temperature present a memory window in their capacitance-voltage dependencies, which means that these structures could have a possible application as gate insulators in non-volatile memory devices. The morphology of the amorphous layers was studied by atomic force microscopy and scanning electron microscopy which revealed increase of the surface roughness and modifications in the a-Si:H layer after the high temperature process. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 100
页数:5
相关论文
共 10 条
[1]   Electron trap density distribution of Si-rich silicon nitride extracted using the modified negative charge decay model of silicon-oxide-nitride-oxide-silicon structure at elevated temperatures [J].
Kim, Tae Hun ;
Park, Il Han ;
Lee, Jong Duk ;
Shin, Hyung Cheol ;
Park, Byung-Gook .
APPLIED PHYSICS LETTERS, 2006, 89 (06)
[2]   Si nanocrystal based memories: Effect of the nanocrystal density [J].
Lu, T. Z. ;
Alexe, M. ;
Scholz, R. ;
Talalaev, V. ;
Zhang, R. J. ;
Zacharias, M. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (01)
[3]   Deposition of silicon nitride by low-pressure electron cyclotron resonance plasma enhanced chemical vapor deposition in N2/Ar/SiH4 [J].
Moshkalyov, SA ;
Diniz, JA ;
Swart, JW ;
Tatsch, PJ ;
Machida, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06) :2682-2687
[4]  
Nesheva D., 2012, QUANTUM DOTS VARIETY, P183
[5]  
Nicollian E. H., 2003, MOS (Metal Oxide Semiconductor) Physics and Technology
[6]   Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices [J].
Ostraat, ML ;
De Blauwe, JW ;
Green, ML ;
Bell, LD ;
Brongersma, ML ;
Casperson, J ;
Flagan, RC ;
Atwater, HA .
APPLIED PHYSICS LETTERS, 2001, 79 (03) :433-435
[7]  
Pavesi L., 2010, Silicon Nanocrystals: Fundamentals, Synthesis and Applications
[8]   Silicon nitride deposited by ECR-CVD at room temperature for LOCOS isolation technology [J].
Pereira, MA ;
Diniz, JA ;
Doi, I ;
Swart, JW .
APPLIED SURFACE SCIENCE, 2003, 212 :388-392
[9]  
Sze S.M., 2013, SEMICONDUCTOR DEVICE
[10]  
Tiwari S, 1996, APPL PHYS LETT, V68, P1377, DOI 10.1063/1.116085