Microbial consortia at steady supply

被引:34
作者
Taillefumier, Thibaud [1 ,2 ,3 ]
Posfai, Anna [1 ]
Meir, Yigal [4 ]
Wingreen, Ned S. [1 ,5 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Neurosci, Austin, TX 78712 USA
[4] Ben Gurion Univ Negev, Dept Phys, Beer Sheva, Israel
[5] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
COMPETITIVE-EXCLUSION PRINCIPLE; PROTEIN-SYNTHESIS RATES; ECOLOGICAL DYNAMICS; ESCHERICHIA-COLI; RAPID EVOLUTION; STABILITY; SOIL; ENVIRONMENT; METABOLISM; DIVERSITY;
D O I
10.7554/eLife.22644
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metagenomics has revealed hundreds of species in almost all microbiota. In a few well-studied cases, microbial communities have been observed to coordinate their metabolic fluxes. In principle, microbes can divide tasks to reap the benefits of specialization, as in human economies. However, the benefits and stability of an economy of microbial specialists are far from obvious. Here, we physically model the population dynamics of microbes that compete for steadily supplied resources. Importantly, we explicitly model the metabolic fluxes yielding cellular biomass production under the constraint of a limited enzyme budget. We find that population dynamics generally leads to the coexistence of different metabolic types. We establish that these microbial consortia act as cartels, whereby population dynamics pins down resource concentrations at values for which no other strategy can invade. Finally, we propose that at steady supply, cartels of competing strategies automatically yield maximum biomass, thereby achieving a collective optimum.
引用
收藏
页数:65
相关论文
共 38 条
[1]   Global organization of metabolic fluxes in the bacterium Escherichia coli [J].
Almaas, E ;
Kovács, B ;
Vicsek, T ;
Oltvai, ZN ;
Barabási, AL .
NATURE, 2004, 427 (6977) :839-843
[2]  
[Anonymous], BANTAM CLASSICS
[3]   Structure, scaling, and phase transition in the optimal transport network [J].
Bohn, Steffen ;
Magnasco, Marcelo O. .
PHYSICAL REVIEW LETTERS, 2007, 98 (08)
[4]   The response of global terrestrial ecosystems to interannual temperature variability [J].
Braswell, BH ;
Schimel, DS ;
Linder, E ;
Moore, B .
SCIENCE, 1997, 278 (5339) :870-872
[5]   Explaining microbial genomic diversity in light of evolutionary ecology [J].
Cordero, Otto X. ;
Polz, Martin F. .
NATURE REVIEWS MICROBIOLOGY, 2014, 12 (04) :263-273
[6]   Fluctuations and Redundancy in Optimal Transport Networks [J].
Corson, Francis .
PHYSICAL REVIEW LETTERS, 2010, 104 (04)
[7]   The metagenomics of soil [J].
Daniel, R .
NATURE REVIEWS MICROBIOLOGY, 2005, 3 (06) :470-478
[8]   Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells [J].
Delgado, Francisco Feijo ;
Cermak, Nathan ;
Hecht, Vivian C. ;
Son, Sungmin ;
Li, Yingzhong ;
Knudsen, Scott M. ;
Olcum, Selim ;
Higgins, John M. ;
Chen, Jianzhu ;
Grover, William H. ;
Manalis, Scott R. .
PLOS ONE, 2013, 8 (07)
[9]   Solutions to the Public Goods Dilemma in Bacterial Biofilms [J].
Drescher, Knut ;
Nadell, Carey D. ;
Stone, Howard A. ;
Wingreen, Ned S. ;
Bassler, Bonnie L. .
CURRENT BIOLOGY, 2014, 24 (01) :50-55
[10]   Metagenomic analysis of the human distal gut microbiome [J].
Gill, Steven R. ;
Pop, Mihai ;
DeBoy, Robert T. ;
Eckburg, Paul B. ;
Turnbaugh, Peter J. ;
Samuel, Buck S. ;
Gordon, Jeffrey I. ;
Relman, David A. ;
Fraser-Liggett, Claire M. ;
Nelson, Karen E. .
SCIENCE, 2006, 312 (5778) :1355-1359