Regression modeling for nonparametric estimation of distribution and quantile functions

被引:1
|
作者
Cheng, MY [1 ]
Peng, L
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
distribution function; empirical quantiles; kernel; local polynomial estimation; nonparametric estimation; quantile; smoothing;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a local linear estimator of a smooth distribution function. This estimator applies local linear techniques to observations from a regression model in which the value of the empirical distribution function equals the value of true distribution plus an error term. We show that, for most commonly used kernel functions, our local linear estimator has a smaller asymptotic mean integrated squared error than the conventional kernel distribution estimator. Importantly, since this MISE reduction occurs through a constant factor of a second order term, any bandwidth selection procedures for kernel distribution estimator can be easily adapted for our estimator. For the estimation of a smooth quantile function, we establish a regression model of the empirical quantile function and obtain a local quadratic estimator. It has better asymptotic performance than the kernel quantile estimator in both interior and boundary cases.
引用
收藏
页码:1043 / 1060
页数:18
相关论文
共 50 条
  • [41] Composite kernel quantile regression
    Bang, Sungwan
    Eo, Soo-Heang
    Jhun, Myoungshic
    Cho, Hyung Jun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 2228 - 2240
  • [42] Nonparametric comparison of several transformations of distribution functions
    Boutahar, Mohamed
    Ghattas, Badih
    Pommeret, Denys
    JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (03) : 619 - 633
  • [43] Nonparametric inference for distribution functions with stratified samples
    Saegusa, Takumi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 215 : 356 - 367
  • [44] Variance estimation in censored quantile regression via induced smoothing
    Pang, Lei
    Lu, Wenbin
    Wang, Huixia Judy
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 785 - 796
  • [45] Nonparametric estimation of the shape functions and related asymptotic results
    Jimenez-Gamero, M. D.
    Pardo-Fernandez, J. C.
    STATISTICAL PAPERS, 2024, 65 (03) : 1575 - 1611
  • [46] Nonparametric estimation of transfer functions: Rates of convergence and adaptation
    Goldenshluger, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (02) : 644 - 658
  • [47] An adaptive estimation for covariate-adjusted nonparametric regression model
    Feng Li
    Lu Lin
    Yiqiang Lu
    Sanying Feng
    Statistical Papers, 2021, 62 : 93 - 115
  • [48] Estimation and Inference for Nonparametric Expected Shortfall Regression over RKHS
    Yu, Myeonghun
    Wang, Yue
    Xie, Siyu
    Tan, Kean Ming
    Zhou, Wen-Xin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2025,
  • [49] On nonparametric estimation of the regression function under random censorship model
    Guessoum, Zohra
    Ould-Said, Elias
    STATISTICS & RISK MODELING, 2008, 26 (03) : 159 - 177
  • [50] An adaptive estimation for covariate-adjusted nonparametric regression model
    Li, Feng
    Lin, Lu
    Lu, Yiqiang
    Feng, Sanying
    STATISTICAL PAPERS, 2021, 62 (01) : 93 - 115