Regression modeling for nonparametric estimation of distribution and quantile functions

被引:1
|
作者
Cheng, MY [1 ]
Peng, L
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
distribution function; empirical quantiles; kernel; local polynomial estimation; nonparametric estimation; quantile; smoothing;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a local linear estimator of a smooth distribution function. This estimator applies local linear techniques to observations from a regression model in which the value of the empirical distribution function equals the value of true distribution plus an error term. We show that, for most commonly used kernel functions, our local linear estimator has a smaller asymptotic mean integrated squared error than the conventional kernel distribution estimator. Importantly, since this MISE reduction occurs through a constant factor of a second order term, any bandwidth selection procedures for kernel distribution estimator can be easily adapted for our estimator. For the estimation of a smooth quantile function, we establish a regression model of the empirical quantile function and obtain a local quadratic estimator. It has better asymptotic performance than the kernel quantile estimator in both interior and boundary cases.
引用
收藏
页码:1043 / 1060
页数:18
相关论文
共 50 条
  • [31] A nonparametric quantile estimation method
    Huang, ML
    Brill, PH
    AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE STATISTICAL COMPUTING SECTION, 1996, : 206 - 211
  • [32] Quantile processes for semi and nonparametric regression
    Chao, Shih-Kang
    Volgushev, Stanislav
    Cheng, Guang
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3272 - 3331
  • [33] Nonparametric recursive quantile estimation
    Kohler, Michael
    Krzyzak, Adam
    Walk, Harro
    STATISTICS & PROBABILITY LETTERS, 2014, 93 : 102 - 107
  • [34] Powerful nonparametric checks for quantile regression
    Maistre, Samuel
    Lavergne, Pascal
    Patilea, Valentin
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 180 : 13 - 29
  • [35] Testing for additivity in nonparametric quantile regression
    Holger Dette
    Matthias Guhlich
    Natalie Neumeyer
    Annals of the Institute of Statistical Mathematics, 2015, 67 : 437 - 477
  • [36] Testing for additivity in nonparametric quantile regression
    Dette, Holger
    Guhlich, Matthias
    Neumeyer, Natalie
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (03) : 437 - 477
  • [37] OPTIMAL DESIGNS FOR NONPARAMETRIC ESTIMATION OF ZEROS OF REGRESSION FUNCTIONS
    Hlavka, Zdenek
    PROBASTAT '11: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON PROBABILITY AND STATISTICS: DEDICATED TO PROFESSOR LUBOMIR KUBACEK IN RECOGNITION OF HIS EIGHTIETH BIRTHDAY, 2012, 51 : 55 - 65
  • [38] Nonparametric estimation of regression functions in the presence of irrelevant regressors
    Hall, Peter
    Li, Qi
    Racine, Jeffrey S.
    REVIEW OF ECONOMICS AND STATISTICS, 2007, 89 (04) : 784 - 789
  • [39] Nonparametric Estimation of Regression Functions in Point Process Models
    Sebastian Döhler
    Ludger Rüschendorf
    Statistical Inference for Stochastic Processes, 2003, 6 (3) : 291 - 307
  • [40] NONPARAMETRIC-ESTIMATION OF SMOOTH REGRESSION-FUNCTIONS
    NEMIROVSKIY, AS
    SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1985, 23 (06): : 1 - 11