Approximation of continuous periodic functions via statistical convergence

被引:12
作者
Duman, O. [1 ]
Erkus, E.
机构
[1] TOBB Econ & Technol Univ, Dept Math, Fac Arts & Sci, TR-06530 Ankara, Turkey
[2] Canakkale Onsekiz Mart Univ, Fac Sci & Arts, Dept Math, TR-17020 Canakkale, Turkey
关键词
A-statistical convergence; positive linear operators; Korovkin approximation theorem; double Fourier series; Fejer operators;
D O I
10.1016/j.camwa.2006.04.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we give a nontrivial generalization of the classical Korovkin approximation theorem by using the concept of A-statistical convergence, which is a regular (nonmatrix) summability method, for sequences of positive linear operators defined on the space of all real-valued continuous and 2 pi periodic functions on the real m-dimensional space. Furthermore, in the case of m = 2, we display an application which shows that our result is stronger than the classical approximation. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:967 / 974
页数:8
相关论文
共 16 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
Boos J., 2000, CLASSICAL MODERN MET
[3]  
Connor J. S., 1988, ANALYSIS, V8, P47
[4]   Statistical approximation by positive linear operators [J].
Duman, O ;
Orhan, C .
STUDIA MATHEMATICA, 2004, 161 (02) :187-197
[5]  
Duman O., 2003, Demonstratio Math., V36, P873
[6]   A-statistical extension of the Korovkin type approximation theorem [J].
Erkus, E ;
Duman, O .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2005, 115 (04) :499-508
[7]   A Korovkin type approximation theorem in statistical sense [J].
Erkus, Esra ;
Duman, Oktay .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2006, 43 (03) :285-294
[8]  
Fast H., 1951, Colloq. Math, V2, P241, DOI [10.4064/cm-2-3-4-241-244, DOI 10.4064/CM-2-3-4-241-244]
[9]   DENSITIES AND SUMMABILITY [J].
FREEDMAN, AR ;
SEMBER, JJ .
PACIFIC JOURNAL OF MATHEMATICS, 1981, 95 (02) :293-305
[10]  
Fridy JA., 1985, Analysis, V5, P301, DOI DOI 10.1524/ANLY.1985.5.4.301