Trudinger-Moser inequalities on harmonic AN groups under Lorentz norms

被引:2
作者
Su, Dan [1 ]
Yang, Qiaohua [1 ]
机构
[1] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Trudinger-Moser inequality; Lorentz space; Harmonic AN groups; Sharp constant; HARDY-ADAMS INEQUALITIES; HYPERBOLIC SPACES; EIGENFUNCTIONS; LAPLACIAN; EXISTENCE; OPERATORS; GROWTH;
D O I
10.1016/j.na.2019.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to establish sharp Trudinger-Moser type inequalities on harmonic AN groups S for functions whose gradient is in the Lorentz space L(n, q). Our results show that even if S is not with strictly negative sectional curvature, one can also replace the norm integral(S) vertical bar del(Su)vertical bar(n) dV + integral(S) vertical bar u vertical bar(n) dV by integral(S) vertical bar del(Su)vertical bar(n) dV in the Trudinger-Moser type inequalities. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:439 / 454
页数:16
相关论文
共 38 条
[1]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[2]   An Interpolation of Hardy Inequality and Trudinger-Moser Inequality in RN and Its Applications [J].
Adimurthi ;
Yang, Yunyan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (13) :2394-2426
[3]   Moser type inequalities for higher-order derivatives in Lorentz spaces [J].
Alberico, Angela .
POTENTIAL ANALYSIS, 2008, 28 (04) :389-400
[4]  
Alvino A, 1996, POTENTIAL ANAL, V5, P273
[5]  
Anker J-P., 1996, ANN SCUOLA NORM SUP, V23, P643
[6]  
[Anonymous], 2016, CALC VAR PARTIAL DIF
[7]  
[Anonymous], 1995, LECT NOTES MATH
[8]  
Bertrand J., ARXIV180900879
[9]   A Moser-type inequality in Lorentz-Sobolev spaces for unbounded domains in RN [J].
Cassani, Daniele ;
Tarsi, Cristina .
ASYMPTOTIC ANALYSIS, 2009, 64 (1-2) :29-51
[10]   A CLASS OF NONSYMMETRIC HARMONIC RIEMANNIAN SPACES [J].
DAMEK, E ;
RICCI, F .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :139-142