De Rham 2-Cohomology of Real Flag Manifolds

被引:3
作者
Del Barco, Viviana [1 ,2 ]
Barrera San Martin, Luiz Antonio [2 ]
机构
[1] UNR, CONICET, Rosario, Santa Fe, Argentina
[2] Univ Estadual Campinas, IMECC, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
flag manifold; cellular homology; Schubert cell; de Rham cohomology; characteristic classes;
D O I
10.3842/SIGMA.2019.051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-Theta = G/P-Theta be a flag manifold associated to a non-compact real simple Lie group G and the parabolic subgroup P-Theta. This is a closed subgroup of G determined by a subset Theta of simple restricted roots of g = Lie(G). This paper computes the second de Rham cohomology group of F-Theta. We prove that it is zero in general, with some rare exceptions. When it is non-zero, we give a basis of H-2(F Theta,R) through the Weil construction of closed 2-forms as characteristic forms of principal fiber bundles. The starting point is the computation of the second homology group of F-Theta with coefficients in a ring R.
引用
收藏
页数:23
相关论文
共 50 条
[41]   Real groups transitive on complex flag manifolds [J].
Wolf, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) :2483-2487
[42]   Space-time foam dense singularities and de Rham cohomology [J].
Mallios, A ;
Rosinger, EE .
ACTA APPLICANDAE MATHEMATICAE, 2001, 67 (01) :59-89
[43]   Representing de Rham cohomology classes on an open Riemann surface by holomorphic forms [J].
Alarcon, Antonio ;
Larusson, Finnur .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (09)
[44]   Castelnuovo–Mumford Regularity and Computing the de Rham Cohomology of Smooth Projective Varieties [J].
Peter Scheiblechner .
Foundations of Computational Mathematics, 2012, 12 :541-571
[45]   Twisted de Rham cohomology, homological definition of the integral and "Physics over a ring" [J].
Schwarz, A. ;
Shapiro, I. .
NUCLEAR PHYSICS B, 2009, 809 (03) :547-560
[46]   Abstract Differential Geometry, Differential Algebras of Generalized Functions, and de Rham Cohomology [J].
Anastasios Mallios ;
Elemér E. Rosinger .
Acta Applicandae Mathematica, 1999, 55 :231-250
[47]   Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology [J].
Mallios, A ;
Rosinger, EE .
ACTA APPLICANDAE MATHEMATICAE, 1999, 55 (03) :231-250
[48]   Transverse Weitzenböck formulas and de Rham cohomology of totally geodesic foliations [J].
Fabrice Baudoin ;
Erlend Grong .
Annals of Global Analysis and Geometry, 2019, 56 :403-428
[49]   COMPRESSION SEMIGROUPS OF OPEN ORBITS ON REAL FLAG MANIFOLDS [J].
HILGERT, J ;
NEEB, KH .
MONATSHEFTE FUR MATHEMATIK, 1995, 119 (03) :187-214
[50]   Orientability of vector bundles over real flag manifolds [J].
Patrao, Mauro ;
San Martin, Luiz A. B. ;
dos Santos, Laercio J. ;
Seco, Lucas .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (10-11) :2774-2786