De Rham 2-Cohomology of Real Flag Manifolds

被引:3
作者
Del Barco, Viviana [1 ,2 ]
Barrera San Martin, Luiz Antonio [2 ]
机构
[1] UNR, CONICET, Rosario, Santa Fe, Argentina
[2] Univ Estadual Campinas, IMECC, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
flag manifold; cellular homology; Schubert cell; de Rham cohomology; characteristic classes;
D O I
10.3842/SIGMA.2019.051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-Theta = G/P-Theta be a flag manifold associated to a non-compact real simple Lie group G and the parabolic subgroup P-Theta. This is a closed subgroup of G determined by a subset Theta of simple restricted roots of g = Lie(G). This paper computes the second de Rham cohomology group of F-Theta. We prove that it is zero in general, with some rare exceptions. When it is non-zero, we give a basis of H-2(F Theta,R) through the Weil construction of closed 2-forms as characteristic forms of principal fiber bundles. The starting point is the computation of the second homology group of F-Theta with coefficients in a ring R.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Noncommutative de Rham cohomology of finite groups
    Castellani, L
    Catenacci, R
    Debernardi, M
    Pagani, C
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 (12): : 1961 - 1986
  • [22] A Quantum Type Deformation of the Cohomology Ring of Flag Manifolds
    Mare, Augustin-Liviu
    JOURNAL OF LIE THEORY, 2010, 20 (02) : 329 - 346
  • [23] Differential characters of Drinfeld modules and de Rham cohomology
    Borger, James
    Saha, Arnab
    ALGEBRA & NUMBER THEORY, 2019, 13 (04) : 797 - 838
  • [24] STEENROD OPERATIONS ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC STACKS
    Scavia, Federico
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2023, 22 (02) : 493 - 540
  • [25] CANONICAL INTEGRAL STRUCTURES ON THE DE RHAM COHOMOLOGY OF CURVES
    Cais, Bryden
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) : 2255 - 2300
  • [26] de Rham and Dolbeault cohomology of solvmanifolds with local systems
    Kasuya, Hisashi
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (04) : 781 - 805
  • [27] A motivic proof of the finiteness of the relative de Rham cohomology
    Vezzani, Alberto
    ARCHIV DER MATHEMATIK, 2024, 123 (04) : 393 - 398
  • [28] FROBENIUS ACTIONS ON THE DE RHAM COHOMOLOGY OF DRINFELD MODULES
    Gekeler, Ernst-Ulrich
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (06) : 3167 - 3183
  • [29] Cellular homology of real flag manifolds
    Rabelo, Lonardo
    San Martin, Luiz A. B.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (05): : 745 - 772
  • [30] MOTION PLANNING IN REAL FLAG MANIFOLDS
    Gonzalez, Jesus
    Gutierrez, Barbara
    Gutierrez, Darwin
    Lara, Adriana
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2016, 18 (02) : 359 - 375