ON SEQUENCE SPACES GENERATED BY BINOMIAL DIFFERENCE OPERATOR OF FRACTIONAL ORDER

被引:28
作者
Yaying, Taja [1 ]
Hazarika, Bipan [2 ,3 ]
机构
[1] Dera Natung Govt Coll, Dept Math, Itanagar 791111, Arunachal Prade, India
[2] Rajiv Gandhi Univ, Dept Math, Rono Hills, Doimukh 791112, Arunachal Prade, India
[3] Gauhati Univ, Dept Math, Gauhati 781014, Assam, India
关键词
binomial difference sequence space; difference operator Delta((alpha)); Schauder basis; alpha; beta; gamma-duals; matrix transformation; compact operator; Hausdorff measure of non-compactness; geometric properties; COMPACT-OPERATORS; INCLUDE; L(P);
D O I
10.1515/ms-2017-0276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we introduce binomial di ff erence sequence spaces of fractional order alpha; b(p)(r,s) (Delta((alpha))) (1 <= p <= infinity) by the composition of binomial matrix, B-r,B-s and fractional di ff erence operator Delta((alpha)), defined by (Delta((alpha))x)(k) = Sigma(infinity)(i=0) (-1)(i) Gamma(alpha+1)/i!Gamma(alpha-i+1)x(k-i). We give some topological properties, obtain the Schauder basis and determine the alpha, beta and gamma-duals of the spaces. We characterize the matrix classes b(p)(r,s) (Delta((alpha))), Y); where Y is an element of {l(infinity), c, c(0,) l(1)} and certain classes of compact operators on the space b(p)(r,s) (Delta((alpha))) using Hausdorff measure of non-compactness. Finally, we give some geometric properties of the space b(p)(r,s) (Delta((alpha))) (1 < p < infinity). (C) 2019 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:901 / 918
页数:18
相关论文
共 38 条
[31]  
MENG J, 2017, J INEQUAL APPL, V128
[32]  
MENG J, 2017, J INEQUAL APPL, V194
[33]  
MENG J, 2017, ADV DIFFERENCE EQU, V241
[34]  
Meng J, 2017, KYUNGPOOK MATH J, V57, P631, DOI 10.5666/KMJ.2017.57.4.631
[35]   On the Euler sequence spaces which include the spaces lp and l∞ II [J].
Mursaleen, M ;
Basar, F ;
Altay, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (03) :707-717
[36]  
Polat H, 2007, ACTA MATH SCI, V27, P254
[37]   MATRIX TRANSFORMATIONS OF SEQUENCE SPACES - SURVEY OF RESULTS [J].
STIEGLITZ, M ;
TIETZ, H .
MATHEMATISCHE ZEITSCHRIFT, 1977, 154 (01) :1-16
[38]  
Wilansky A., 1984, Summability through functional analysis