ON SEQUENCE SPACES GENERATED BY BINOMIAL DIFFERENCE OPERATOR OF FRACTIONAL ORDER

被引:28
作者
Yaying, Taja [1 ]
Hazarika, Bipan [2 ,3 ]
机构
[1] Dera Natung Govt Coll, Dept Math, Itanagar 791111, Arunachal Prade, India
[2] Rajiv Gandhi Univ, Dept Math, Rono Hills, Doimukh 791112, Arunachal Prade, India
[3] Gauhati Univ, Dept Math, Gauhati 781014, Assam, India
关键词
binomial difference sequence space; difference operator Delta((alpha)); Schauder basis; alpha; beta; gamma-duals; matrix transformation; compact operator; Hausdorff measure of non-compactness; geometric properties; COMPACT-OPERATORS; INCLUDE; L(P);
D O I
10.1515/ms-2017-0276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we introduce binomial di ff erence sequence spaces of fractional order alpha; b(p)(r,s) (Delta((alpha))) (1 <= p <= infinity) by the composition of binomial matrix, B-r,B-s and fractional di ff erence operator Delta((alpha)), defined by (Delta((alpha))x)(k) = Sigma(infinity)(i=0) (-1)(i) Gamma(alpha+1)/i!Gamma(alpha-i+1)x(k-i). We give some topological properties, obtain the Schauder basis and determine the alpha, beta and gamma-duals of the spaces. We characterize the matrix classes b(p)(r,s) (Delta((alpha))), Y); where Y is an element of {l(infinity), c, c(0,) l(1)} and certain classes of compact operators on the space b(p)(r,s) (Delta((alpha))) using Hausdorff measure of non-compactness. Finally, we give some geometric properties of the space b(p)(r,s) (Delta((alpha))) (1 < p < infinity). (C) 2019 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:901 / 918
页数:18
相关论文
共 38 条
[1]   On the Euler sequence spaces which include the spaces lp and l∞I [J].
Altay, B ;
Basar, F ;
Mursaleen, M .
INFORMATION SCIENCES, 2006, 176 (10) :1450-1462
[2]  
Altay B., 2006, Southeast Asian Bull. Math., V30, P209
[3]   A unifying approach to the difference operators and their applications [J].
Baliarsingh, P. ;
Dutta, S. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2015, 33 (01) :49-+
[4]   On the classes of fractional order difference sequence spaces and their matrix transformations [J].
Baliarsingh, P. ;
Dutta, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 250 :665-674
[5]   Some new difference sequence spaces of fractional order and their dual spaces [J].
Baliarsingh, P. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (18) :9737-9742
[6]  
Baliarsingh P., 2015, Journal of the Egyptian Mathematical Society, V23, P297
[7]   BANACH-SAKS PROPERTIES AND SPREADING MODELS [J].
BEAUZAMY, B .
MATHEMATICA SCANDINAVICA, 1979, 44 (02) :357-384
[8]   Generalized difference sequence spaces and their dual spaces [J].
Bektas, ÇA ;
Et, M ;
Colak, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (02) :423-432
[9]  
BISGIN M. C., 2016, J INEQUAL APPL, V304
[10]  
BISGIN M. C., 2016, J INEQUAL APPL, V309