Baire spaces and infinite games

被引:1
作者
Galvin, Fred [1 ]
Scheepers, Marion [2 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[2] Boise State Univ, Dept Math, Boise, ID 83725 USA
关键词
Baire space; Infinite game; Measurable cardinal;
D O I
10.1007/s00153-015-0461-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that if the nonempty player of the Banach-Mazur game has a winning strategy on a space, then that space is Baire in all powers even in the box product topology. The converse of this implication may also be true: We know of no consistency result to the contrary. In this paper we establish the consistency of the converse relative to the consistency of the existence of a proper class of measurable cardinals.
引用
收藏
页码:85 / 104
页数:20
相关论文
共 10 条
[1]  
[Anonymous], 1981, The Scottish Book: Mathematics from the Scottish Cafe
[2]  
[Anonymous], ANN MATH STUD
[3]   IDEAL GAME [J].
GALVIN, F ;
JECH, T ;
MAGIDOR, M .
JOURNAL OF SYMBOLIC LOGIC, 1978, 43 (02) :284-292
[4]   PRECIPITOUS IDEALS [J].
JECH, T ;
MAGIDOR, M ;
MITCHELL, W ;
PRIKRY, K .
JOURNAL OF SYMBOLIC LOGIC, 1980, 45 (01) :1-8
[5]  
Jech T. J., 2003, SET THEORY, V14
[6]  
Juhasz I., 1971, CARDINAL FUNCTIONS T
[7]  
Schreier J., 1938, MENGEN STUD MATH, V7, P155
[8]  
TELGARSKY R, 1987, ROCKY MT J MATH, V17, P227
[9]   COMBINATORIAL ANALYSIS IN INFINITE SETS + SOME PHYSICAL THEORIES [J].
ULAM, S .
SIAM REVIEW, 1964, 6 (04) :343-&