Lag-generalized synchronization of time-delay chaotic systems with stochastic perturbation

被引:5
作者
Zhang, Shuo [1 ]
Yu, Yongguang [1 ]
Wen, Guoguang [1 ]
Rahmani, Ahmed [2 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Ecole Cent Lille, LAGIS UMR CNRS 8219, F-59651 Villeneuve Dascq, France
来源
MODERN PHYSICS LETTERS B | 2016年 / 30卷 / 01期
关键词
Lag-generalized synchronization; stochastic perturbation; time-delay; LaSalle-type invariance principle; PROJECTIVE SYNCHRONIZATION; NETWORK;
D O I
10.1142/S0217984915502632
中图分类号
O59 [应用物理学];
学科分类号
摘要
The lag-generalized synchronization of coupled time-delay chaotic systems with unknown parameters and stochastic perturbation is investigated. Based on the LaSalle-type invariance principle of stochastic differential equation, the synchronization is realized by analyzing stochastic stability of the error system. In order to achieve the synchronization, the unknown parameter update laws and the control laws are proposed. At last, two numerical examples are presented to show the effectiveness of the obtained theoretical results.
引用
收藏
页数:19
相关论文
共 25 条
[1]   Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems [J].
Ahmadlou, Mehran ;
Adeli, Hojjat .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (04) :326-332
[2]   Fuzzy delayed output feedback synchronization for time-delayed chaotic systems [J].
Ahn, Choon Ki .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (01) :16-24
[3]   Stochastic synchronization of interacting pathways in testosterone model [J].
Alam, Md. Jahoor ;
Devi, Gurumayum Reenaroy ;
Singh, R. K. Brojen ;
Ramaswamy, R. ;
Thakur, Sonu Chand ;
Sharma, B. Indrajit .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2012, 41 :10-17
[4]   Complete and generalized synchronization of chaos and hyperchaos in a coupled first-order time-delayed system [J].
Banerjee, Tanmoy ;
Biswas, Debabrata ;
Sarkar, B. C. .
NONLINEAR DYNAMICS, 2013, 71 (1-2) :279-290
[5]   Generalized synchronization and coherent structures in spatially extended systems [J].
Basnarkov, Lasko ;
Duane, Gregory S. ;
Kocarev, Ljupco .
CHAOS SOLITONS & FRACTALS, 2014, 59 :35-41
[6]  
El-Dessoky M. M., 2012, MATH PROBL ENG, V2012
[7]   Generating hyperchaos via state feedback control [J].
Li, YX ;
Tang, WKS ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (10) :3367-3375
[8]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[9]  
2
[10]   Lag projective synchronization of a class of complex network constituted nodes with chaotic behavior [J].
Lu, Ling ;
Li, Chengren ;
Chen, Liansong ;
Wei, Linling .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) :2843-2849