Effect of Electrolyte Composition and Concentration on Pulsed Potential Electrochemical CO2 Reduction

被引:33
|
作者
Casebolt, Rileigh [1 ]
Kimura, Kevin W. [1 ]
Levine, Kelsey [1 ]
Cimada DaSilva, Jessica Akemi [1 ]
Kim, Jiyoon [2 ]
Dunbar, Tyler A. [1 ]
Suntivich, Jin [2 ]
Hanrath, Tobias [1 ]
机构
[1] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
CO2; copper; electrocatalysis; interface; pulsed potential; CARBON-DIOXIDE; COPPER ELECTRODE; CU ELECTRODES; MASS-TRANSFER; ELECTROREDUCTION; HYDROCARBONS; CATALYSTS; ETHYLENE; PH;
D O I
10.1002/celc.202001445
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
With rising CO2 emissions and growing interests towards CO2 valorization, electrochemical CO2 reduction (eCO(2)R) has emerged as a promising prospect for carbon recycling and chemical energy storage. Yet, product selectivity and electrocatalyst longevity persist as obstacles to the broad implementation of eCO(2)R. A possible solution to ameliorate this challenge is to pulse the applied potential. However, it is currently unclear whether and how the trends and lessons obtained from the more conventional constant potential eCO(2)R translate to pulsed potential eCO(2)R. In this work, we report that the relationship between electrolyte concentration/composition and product distribution for pulsed potential eCO(2)R is different from constant potential eCO(2)R. In the case of constant potential eCO(2)R, increasing KHCO3 concentration favors the formation of H-2 and CH4. In contrast, for pulsed potential eCO(2)R, H-2 formation is suppressed due to the periodic desorption of surface protons, while CH4 is still favored. In the case of KCl, increasing the concentration during constant potential eCO(2)R does not affect product distribution, mainly producing H-2 and CO. However, increasing KCl concentration during pulsed potential eCO(2)R persistently suppresses H-2 formation and greatly favors C-2 products, reaching 71 % Faradaic efficiency. Collectively, these results provide new mechanistic insights into the pulsed eCO(2)R mechanism within the context of proton-donator ability and ionic conductivity.
引用
收藏
页码:681 / 688
页数:8
相关论文
共 50 条
  • [41] Intermetallic CuAu nanoalloy for stable electrochemical CO2 reduction
    Kuang, Siyu
    Li, Minglu
    Chen, Xiaoyi
    Chi, Haoyuan
    Lin, Jianlong
    Hu, Zheng
    Hu, Shi
    Zhang, Sheng
    Ma, Xinbin
    CHINESE CHEMICAL LETTERS, 2023, 34 (07)
  • [42] Promotion of CO2 Electrochemical Reduction via Cu Nanodendrites
    Wu, Minfang
    Zhu, Chang
    Wang, Kang
    Li, Guihua
    Dong, Xiao
    Song, Yanfang
    Xue, Jiamin
    Chen, Wei
    Wei, Wei
    Sun, Yuhan
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (10) : 11562 - 11569
  • [43] Phase engineering of metal nanocatalysts for electrochemical CO2 reduction
    Zhai, Yanjie
    Han, Peng
    Yun, Qinbai
    Ge, Yiyao
    Zhang, Xiao
    Chen, Ye
    Zhang, Hua
    ESCIENCE, 2022, 2 (05): : 467 - 485
  • [44] Advances in electrolyzer design and development for electrochemical CO2 reduction
    He, Ruinan
    Xu, Nengneng
    Ul Hasan, Israr Masood
    Peng, Luwei
    Li, Lulu
    Huang, Haitao
    Qiao, Jinli
    ECOMAT, 2023, 5 (07)
  • [45] Screening of material libraries for electrochemical CO2 reduction catalysts - Improving selectivity of Cu by mixing with Co
    Grote, Jan-Philipp
    Zeradjanin, Aleksandar R.
    Cherevko, Serhiy
    Savan, Alan
    Breitbach, Benjamin
    Ludwig, Alfred
    Mayrhofer, Karl J. J.
    JOURNAL OF CATALYSIS, 2016, 343 : 248 - 256
  • [46] Progress of mechanistic pathways involved in electrochemical CO2 reduction
    Duanmu, Jing-Wen
    Yang, Xue-Peng
    Gao, Fei-Yue
    Atapour, Masoud
    Gao, Min-Rui
    JOURNAL OF ENERGY CHEMISTRY, 2025, 102 : 745 - 767
  • [47] Insights Into the Template Effect on Nanostructured CuO Catalysts for Electrochemical CO2 Reduction to CO
    Ye, Xiaodong
    Jiang, Yangyang
    Chen, Xi
    Guo, Benshuai
    Mao, Songbai
    Guo, Yafei
    Zhao, Chuanwen
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [48] Promotional Role of a Cation Intermediate Complex in C2 Formation from Electrochemical Reduction of CO2 over Cu
    Liu, Hong
    Liu, Jian
    Yang, Bo
    ACS CATALYSIS, 2021, 11 (19) : 12336 - 12343
  • [49] Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO
    Geng, Zhigang
    Kong, Xiangdong
    Chen, Weiwei
    Su, Hongyang
    Liu, Yan
    Cai, Fan
    Wang, Guoxiong
    Zeng, Jie
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (21) : 6054 - 6059
  • [50] Composition dependent activity of Cu-Pt nanocrystals for electrochemical reduction of CO2
    Guo, Xin
    Zhang, Yuxia
    Deng, Chen
    Li, Xinyuan
    Xue, Yifei
    Yan, Yi-Ming
    Sun, Kening
    CHEMICAL COMMUNICATIONS, 2015, 51 (07) : 1345 - 1348