Penalized Spline Approaches for Functional Principal Component Logit Regression

被引:0
|
作者
Aguilera, A. [1 ,2 ]
Aguilera-Morillo, M. C. [1 ,2 ]
Escabias, M. [1 ,2 ]
Valderrama, M. [1 ,2 ]
机构
[1] Univ Granada, Dept Stat, Granada, Spain
[2] Univ Granada, OR, Granada, Spain
来源
RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS | 2011年
关键词
CURVES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of multicollinearity associated with the estimation of a functional logit model can be solved by using as predictor variables a set of functional principal components. The functional parameter estimated by functional principal component logit regression is often unsmooth. To solve this problem we propose two penalized estimations of the functional logit model based on smoothing functional PCA using P-splines.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [41] Sparse functional principal component analysis in a new regression framework
    Nie, Yunlong
    Cao, Jiguo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 152
  • [42] Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study
    Febrero-Bande, Manuel
    Galeano, Pedro
    Gonzalez-Manteiga, Wenceslao
    INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (01) : 61 - 83
  • [43] Forecast comparison of principal component regression and principal covariate regression
    Heij, Christiaan
    Groenen, Patrick J. F.
    van Dijk, Dick
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (07) : 3612 - 3625
  • [44] Penalized Cox regression with a five-parameter spline model
    Shih, Jia-Han
    Emura, Takeshi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (16) : 3749 - 3768
  • [45] HAZARD REGRESSION WITH PENALIZED SPLINE:THE SMOOTHING PARAMETER CHOICE AND ASYMPTOTICS
    童行伟
    胡涛
    崔恒建
    ActaMathematicaScientia, 2010, 30 (05) : 1759 - 1768
  • [46] HAZARD REGRESSION WITH PENALIZED SPLINE: THE SMOOTHING PARAMETER CHOICE AND ASYMPTOTICS
    Tong Xingwei
    Hu Tao
    Cui Hengjian
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (05) : 1759 - 1768
  • [47] A Taper Equation for Loblolly Pine Using Penalized Spline Regression
    Zapata-Cuartas, Mauricio
    Bullock, Bronson P.
    Montes, Cristian R.
    FOREST SCIENCE, 2021, 67 (01) : 1 - 13
  • [48] Hazard regression for interval-censored data with penalized spline
    Cai, TX
    Betensky, RA
    BIOMETRICS, 2003, 59 (03) : 570 - 579
  • [49] Penalized Preimage Learning in Kernel Principal Component Analysis
    Zheng, Wei-Shi
    Lai, JianHuang
    Yuen, Pong C.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (04): : 551 - 570
  • [50] Penalized versions of functional PLS regression
    Aguilera, A. M.
    Aguilera-Morillo, M. C.
    Preda, C.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 154 : 80 - 92