Penalized Spline Approaches for Functional Principal Component Logit Regression

被引:0
作者
Aguilera, A. [1 ,2 ]
Aguilera-Morillo, M. C. [1 ,2 ]
Escabias, M. [1 ,2 ]
Valderrama, M. [1 ,2 ]
机构
[1] Univ Granada, Dept Stat, Granada, Spain
[2] Univ Granada, OR, Granada, Spain
来源
RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS | 2011年
关键词
CURVES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of multicollinearity associated with the estimation of a functional logit model can be solved by using as predictor variables a set of functional principal components. The functional parameter estimated by functional principal component logit regression is often unsmooth. To solve this problem we propose two penalized estimations of the functional logit model based on smoothing functional PCA using P-splines.
引用
收藏
页码:1 / 7
页数:7
相关论文
empty
未找到相关数据