Stability of the Front under a Vlasov-Fokker-Planck Dynamics

被引:16
|
作者
Esposito, R. [1 ]
Guo, Y. [2 ]
Marra, R. [3 ,4 ]
机构
[1] Univ Aquila, Dipartimento Matemat, I-67100 Coppito, AQ, Italy
[2] Brown Univ, Div Appl Math, Providence, RI 02812 USA
[3] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
[4] Univ Roma Tor Vergata, Unita INFN, I-00133 Rome, Italy
基金
美国国家科学基金会;
关键词
POISSON-BOLTZMANN SYSTEM; PHASE KINETICS EQUATION; EXCESS FREE-ENERGY; CONSERVATION LAW; GLOBAL-SOLUTIONS; ALGEBRAIC RATE; DECAY; SEGREGATION;
D O I
10.1007/s00205-008-0184-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a kinetic model for a system of two species of particles interacting through a long range repulsive potential and a reservoir at given temperature. The model is described by a set of two coupled Vlasov-Fokker-Plank equations. The important front solution, which represents the phase boundary, is a stationary solution on the real line with given asymptotic values at infinity. We prove the asymptotic stability of the front for small symmetric perturbations.
引用
收藏
页码:75 / 116
页数:42
相关论文
共 50 条
  • [1] Stability of the Front under a Vlasov–Fokker–Planck Dynamics
    R. Esposito
    Y. Guo
    R. Marra
    Archive for Rational Mechanics and Analysis, 2010, 195 : 75 - 116
  • [2] VLASOV-FOKKER-PLANCK DESCRIPTION OF PLASMA STABILITY
    SPIGA, G
    WILLIS, BL
    ZWEIFEL, PF
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 1981, 10 (04): : 149 - 160
  • [3] Parabolic limit and stability of the Vlasov-Fokker-Planck system
    Poupaud, F
    Soler, J
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (07): : 1027 - 1045
  • [4] SPECTRUM OF A VLASOV-FOKKER-PLANCK OPERATOR
    ZWEIFEL, PF
    OHLMANN, J
    PROGRESS IN NUCLEAR ENERGY, 1981, 8 (2-3) : 145 - 150
  • [5] STATIONARY SOLUTIONS OF THE VLASOV-FOKKER-PLANCK EQUATION
    DRESSLER, K
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1987, 9 (02) : 169 - 176
  • [6] Instability in a Vlasov-Fokker-Planck binary mixture
    Zhang, Zhu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (2-3) : 1514 - 1535
  • [7] Vlasov-Fokker-Planck equation: stochastic stability of resonances and unstable manifold expansion
    Barre, Julien
    Metivier, David
    NONLINEARITY, 2018, 31 (10) : 4667 - 4691
  • [8] On a Vlasov-Fokker-Planck equation for stored electron beams
    Cesbron, Ludovic
    Herda, Maxime
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 404 : 316 - 353
  • [9] SPECTRUM OF A VLASOV-FOKKER-PLANCK OPERATOR .2.
    PAVERIFONTANA, S
    WILLIS, BL
    ZWEIFEL, PF
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 1981, 10 (04): : 137 - 147
  • [10] Smoluchowski approach to nonlinear Vlasov-Fokker-Planck equations: Stability analysis of beam dynamics and Haissinski theory
    Frank, T. D.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2006, 9 (08):