Stability of the Front under a Vlasov-Fokker-Planck Dynamics

被引:16
作者
Esposito, R. [1 ]
Guo, Y. [2 ]
Marra, R. [3 ,4 ]
机构
[1] Univ Aquila, Dipartimento Matemat, I-67100 Coppito, AQ, Italy
[2] Brown Univ, Div Appl Math, Providence, RI 02812 USA
[3] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
[4] Univ Roma Tor Vergata, Unita INFN, I-00133 Rome, Italy
基金
美国国家科学基金会;
关键词
POISSON-BOLTZMANN SYSTEM; PHASE KINETICS EQUATION; EXCESS FREE-ENERGY; CONSERVATION LAW; GLOBAL-SOLUTIONS; ALGEBRAIC RATE; DECAY; SEGREGATION;
D O I
10.1007/s00205-008-0184-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a kinetic model for a system of two species of particles interacting through a long range repulsive potential and a reservoir at given temperature. The model is described by a set of two coupled Vlasov-Fokker-Plank equations. The important front solution, which represents the phase boundary, is a stationary solution on the real line with given asymptotic values at infinity. We prove the asymptotic stability of the front for small symmetric perturbations.
引用
收藏
页码:75 / 116
页数:42
相关论文
共 26 条
[1]  
ASANO K, COMMUNICATION
[2]   Hydrodynamics of binary fluid phase segregation [J].
Bastea, S ;
Esposito, R ;
Lebowitz, JL ;
Marra, R .
PHYSICAL REVIEW LETTERS, 2002, 89 (23) :1-235701
[3]   Binary fluids with long range segregating interaction. I: Derivation of kinetic and hydrodynamic equations [J].
Bastea, S ;
Esposito, R ;
Lebowitz, JL ;
Marra, R .
JOURNAL OF STATISTICAL PHYSICS, 2000, 101 (5-6) :1087-1136
[4]   Spinodal decomposition in binary gases [J].
Bastea, S ;
Lebowitz, JL .
PHYSICAL REVIEW LETTERS, 1997, 78 (18) :3499-3502
[5]  
Bastea S, 2006, J STAT PHYS, V124, P445, DOI 10.1007/s10955-006-9040-z
[6]  
CARLEN E, UNPUB
[7]   Free energy minimizers for a two-species model with segregation and liquid-vapour transition [J].
Carlen, EA ;
Carvalho, MC ;
Esposito, R ;
Lebowitz, JL ;
Marra, R .
NONLINEARITY, 2003, 16 (03) :1075-1105
[8]   Algebraic rate of decay for the excess free energy and stability of fronts for a nonlocal phase kinetics equation with a conservation law. I [J].
Carlen, EA ;
Carvalho, MC ;
Orlandi, E .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (5-6) :1069-1117
[9]   Algebraic rate of decay for the excess free energy and stability of fronts for a nonlocal phase kinetics equation with a conservation law, II [J].
Carlen, EA ;
Carvalho, MC ;
Orlandi, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (5-6) :847-886
[10]  
CARLEN EA, 2008, ARCH RAT ME IN PRESS