Deep Networks for Single Image Super-Resolution with Multi-context Fusion

被引:0
|
作者
Hui, Zheng [1 ]
Wang, Xiumei [1 ]
Gao, Xinbo [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; Super-resolution; Multi-context fusion;
D O I
10.1007/978-3-319-71607-7_35
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep convolutional neural networks have been successfully applied to image super resolution. In this paper, we propose a multi-context fusion learning based super resolution model to exploit context information on both smaller image regions and larger image regions for SR. To speed up execution time, our method directly takes the low-resolution image (not interpolation version) as input on both training and testing processes and combines the residual network at the same time. The proposed model is extensively evaluated and compared with the state-of-the-art SR methods and experimental results demonstrate its performance in speed and accuracy.
引用
收藏
页码:397 / 407
页数:11
相关论文
共 50 条
  • [41] Guided Dual Networks for Single Image Super-Resolution
    Chen, Wenhui
    Liu, Chuangchuang
    Yan, Yitong
    Jin, Longcun
    Sun, Xianfang
    Peng, Xinyi
    IEEE ACCESS, 2020, 8 : 93608 - 93620
  • [42] Generative collaborative networks for single image super-resolution
    Seddik, Mohamed El Amine
    Tamaazousti, Mohamed
    Lin, John
    NEUROCOMPUTING, 2020, 398 : 293 - 303
  • [43] Lightweight refined networks for single image super-resolution
    Tong, Jiahui
    Dou, Qingyu
    Yang, Haoran
    Jeon, Gwanggil
    Yang, Xiaomin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (03) : 3439 - 3458
  • [44] Lightweight refined networks for single image super-resolution
    Jiahui Tong
    Qingyu Dou
    Haoran Yang
    Gwanggil Jeon
    Xiaomin Yang
    Multimedia Tools and Applications, 2022, 81 : 3439 - 3458
  • [45] LADDER PYRAMID NETWORKS FOR SINGLE IMAGE SUPER-RESOLUTION
    Mo, Zitao
    He, Xiangyu
    Li, Gang
    Cheng, Jian
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 578 - 582
  • [46] Single Image Super-Resolution via Edge Reconstruction and Image Fusion
    Sun, Guangling
    Shen, Zhoubiao
    SIGNAL PROCESSING AND MULTIMEDIA, 2010, 123 : 16 - 23
  • [47] Single image super-resolution with multi-level feature fusion recursive network
    Jin, Xin
    Xiong, Qiming
    Xiong, Chengyi
    Li, Zhibang
    Gao, Zhirong
    NEUROCOMPUTING, 2019, 370 : 166 - 173
  • [48] Multi-Scale Residual Fusion Network for Super-Resolution Reconstruction of Single Image
    Zhao, Baiting
    Hu, Rui
    Jia, Xiaofen
    Guo, Yongcun
    IEEE ACCESS, 2020, 8 : 155285 - 155295
  • [49] Channel Attention and Multi-level Features Fusion for Single Image Super-Resolution
    Lu, Yue
    Zhou, Yun
    Jiang, Zhuqing
    Guo, Xiaoqiang
    Yang, Zixuan
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [50] Multi-Residual Feature Fusion Network for lightweight Single Image Super-Resolution
    Qin, Jiayi
    He, Zheng
    Yan, Binyu
    Jeon, Gwanggil
    Yang, Xiaomin
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 1511 - 1518