Nanohybrids of multi-walled carbon nanotubes and cobalt ferrite nanoparticles: High performance anode material for lithium-ion batteries

被引:20
作者
Mubasher [1 ]
Mumtaz, M. [1 ]
Hassan, Mehwish [2 ]
Ullah, Shafiq [3 ]
Ahmad, Zubair [4 ]
机构
[1] Int Islamic Univ IIU, Fac Basic & Appl Sci FBAS, Dept Phys, Mat Res Lab, H-10, Islamabad 44000, Pakistan
[2] NUCES, Dept Sci & Humanities, FAST, Islamabad, Pakistan
[3] Quaid I Azam Univ, Dept Chem, Islamabad, Pakistan
[4] Ibn E Sina Inst Technol, H-11-4, Islamabad, Pakistan
关键词
MWCNTs)(x)/CoFe2O4 nanohybrids; Toluene; Lithium-ion battery; Cyclic stability; Rate capability; Specific capacity;
D O I
10.1016/j.carbon.2020.08.080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The prerequisite for high-performance lithium-ion batteries (LIBs) is an electrode material that offers high electric conductivity, fast ion transport, and large surface area. Monodispersed cobalt ferrite (CoFe2O4) nanoparticles have been successfully assembled on the surface of multi-walled carbon nanotubes (MWCNTs) by an ultra-sonication assisted route at room temperature. The dispersion has been carried out through a dispersive media (i.e. Toluene) for the formation of (MWCNTs)(x)/CoFe2O4 nanohybrids. These (MWCNTs)(x)/CoFe2O4 nanohybrids exhibit excellent electrochemical performance at different current densities. As anode materials for LIBs, these (MWCNTs)(x)/CoFe2O4 nanohybrids deliver a high specific capacity of 1370 mAhg(-1), which is much higher than CoFe2O4 (1060 mAhg(-1)) nanoparticles and superior cyclic stability (1015 mAhg(-1)) after 25 cycles at 0.2 C-rate. These MWCNTs serve as good electron conductors and volume buffers in improving the lithium performance of (MWCNTs)(x)/CoFe2O4 nanohybrids during the discharge and charge process. Furthermore, these nanohybrids have shown high rate capability (640 mAhg(-1)) at 2.0 A g(-1) that returns to the initial capacity of 970 mAhg(-1) at 0.1 A g(-1) after 30 cycles with Columbic efficiency above 97%. This work offers an easy, large-scale, and low-cost route to produce high electrochemical performance anode materials for LIBs. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 50 条
  • [31] The composite sphere of manganese oxide and carbon nanotubes as a prospective anode material for lithium-ion batteries
    Sun, Xiaofei
    Xu, Youlong
    Ding, Peng
    Chen, Guogang
    Zheng, Xiaoyu
    Zhang, Rui
    Li, Long
    JOURNAL OF POWER SOURCES, 2014, 255 : 163 - 169
  • [32] Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries
    Lee, Jong-Hyuk
    Kim, Wan-Jun
    Kim, Jae-Youn
    Lim, Sung-Hwan
    Lee, Sung-Man
    JOURNAL OF POWER SOURCES, 2008, 176 (01) : 353 - 358
  • [33] Co9Se8 nanoparticles as high capacity anode material for lithium-ion batteries
    Kumar, Pushpendra
    Hu, Lung-Hao
    MATERIALS RESEARCH EXPRESS, 2018, 5 (07):
  • [34] Interconnected silicon nanoparticles originated from halloysite nanotubes through the magnesiothermic reduction: A high-performance anode material for lithium-ion batteries
    Tang, Wei
    Guo, Xiaoxia
    Liu, Xiaohe
    Chen, Gen
    Wang, Haoji
    Zhang, Ning
    Wang, Jun
    Qiu, Guanzhou
    Ma, Renzhi
    APPLIED CLAY SCIENCE, 2018, 162 : 499 - 506
  • [35] Multi-Walled Carbon Nanotube Paper Anodes for Lithium Ion Batteries
    Landi, Brian J.
    Dileo, Roberta A.
    Schauerman, Chris M.
    Cress, Cory D.
    Ganter, Matthew J.
    Raffaelle, Ryne P.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (06) : 3406 - 3410
  • [36] Synthesis of carbon nanotubes anchored with mesoporous Co3O4 nanoparticles as anode material for lithium-ion batteries
    Abbas, Syed Mustansar
    Hussain, Syed Tajammul
    Ali, Saqib
    Ahmad, Nisar
    Ali, Nisar
    Munawar, Khurram Shahzad
    ELECTROCHIMICA ACTA, 2013, 105 : 481 - 488
  • [37] Fe3O4 nanoparticles embedded in carbon-framework as anode material for high performance lithium-ion batteries
    Yu, Yang
    Zhu, Yongchun
    Gong, Huaxu
    Ma, Yanmei
    Zhang, Xing
    Li, Na
    Qian, Yitai
    ELECTROCHIMICA ACTA, 2012, 83 : 53 - 58
  • [38] Polyimide schiff base as a high-performance anode material for lithium-ion batteries
    Wang, Jun
    Yao, Hongyan
    Du, Chunya
    Guan, Shaowei
    JOURNAL OF POWER SOURCES, 2021, 482
  • [39] CoNiO nanowire arrays as a high-performance anode material for lithium-ion batteries
    Yao, Jianyu
    Xiao, Peng
    Zhang, Yunhuai
    Zhan, Min
    Yang, Fei
    Meng, Xiaoqin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 583 : 366 - 371
  • [40] Nitrogen-doped Carbon Coated Porous Silicon as High Performance Anode Material for Lithium-Ion Batteries
    Jeong, Min-Gi
    Islam, Mobinul
    Du, Hoang Long
    Lee, Yoon-Sung
    Sun, Ho-Hyun
    Choi, Wonchang
    Lee, Joong Kee
    Chung, Kyung Yoon
    Jung, Hun-Gi
    ELECTROCHIMICA ACTA, 2016, 209 : 299 - 307