Low-temperature environments for quantum computation and quantum simulation*

被引:4
作者
Fu, Hailong [1 ]
Wang, Pengjie [2 ]
Hu, Zhenhai [3 ]
Li, Yifan [3 ]
Lin, Xi [3 ,4 ,5 ]
机构
[1] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[4] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[5] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
low temperature physics; refrigerators; quantum computation; quantum simulation; SINGLE DEFECT CENTERS; NUCLEAR-SPIN QUBITS; EXPERIMENTAL REALIZATION; SUPERCONDUCTING QUBITS; COUPLED ELECTRON; STATE; ENTANGLEMENT; INFORMATION; DYNAMICS; COHERENCE;
D O I
10.1088/1674-1056/abd762
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This review summarizes the requirement of low temperature conditions in existing experimental approaches to quantum computation and quantum simulation.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Photodynamics of quantum emitters in hexagonal boron nitride revealed by low-temperature spectroscopy
    Sontheimer, Bernd
    Braun, Merle
    Nikolay, Niko
    Sadzak, Nikola
    Aharonovich, Igor
    Benson, Oliver
    [J]. PHYSICAL REVIEW B, 2017, 96 (12)
  • [42] Enhanced precision bound of low-temperature quantum thermometry via dynamical control
    Mukherjee, Victor
    Zwick, Analia
    Ghosh, Arnab
    Chen, Xi
    Kurizki, Gershon
    [J]. COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [43] Scalable architecture for a room temperature solid-state quantum information processor
    Yao, N. Y.
    Jiang, L.
    Gorshkov, A. V.
    Maurer, P. C.
    Giedke, G.
    Cirac, J. I.
    Lukin, M. D.
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [44] A Macroscopic Device for Quantum Computation
    Diederik Aerts
    Ellie D’Hondt
    Bart D’Hooghe
    Marek Czachor
    Jeroen Dehaene
    Bart De Moor
    [J]. International Journal of Theoretical Physics, 2008, 47 : 200 - 211
  • [45] Quantum computation
    Barenco, A
    Huelga, SF
    Ekert, AK
    [J]. NEW DEVELOPMENTS ON FUNDAMENTAL PROBLEMS IN QUANTUM PHYSICS, 1997, 81 : 39 - 54
  • [46] A macroscopic device for quantum computation
    Aerts, Diederik
    D'Hondt, Ellie
    D'Hooghe, Bart
    Czachor, Marek
    Dehaene, Jeroen
    De Moor, Bart
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (01) : 200 - 211
  • [47] Quantum computation by teleportation and symmetry
    Wang, Dong-Sheng
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (15):
  • [48] State complexity and quantum computation
    Cai, Yu
    Le, Huy Nguyen
    Scarani, Valerio
    [J]. ANNALEN DER PHYSIK, 2015, 527 (9-10) : 684 - 700
  • [49] Barium Ions for Quantum Computation
    Dietrich, M. R.
    Avril, A.
    Bowler, R.
    Kurz, N.
    Salacka, J. S.
    Shu, G.
    Blinov, B. B.
    [J]. NON-NEUTRAL PLASMA PHYSICS VII, 2009, 1114 : 25 - 30
  • [50] Molecular spins for quantum computation
    Gaita-Arino, A.
    Luis, F.
    Hill, S.
    Coronado, E.
    [J]. NATURE CHEMISTRY, 2019, 11 (04) : 301 - 309