Image quality transfer and applications in diffusion MRI

被引:77
|
作者
Alexander, Daniel C. [1 ,2 ]
Zikic, Darko [3 ]
Ghosh, Aurobrata [1 ,2 ]
Tanno, Ryutaro [1 ,2 ]
Wottschel, Viktor [4 ]
Zhang, Jiaying [1 ,2 ]
Kaden, Enrico [1 ,2 ]
Dyrby, Tim B. [5 ,6 ]
Sotiropoulos, Stamatios N. [7 ,8 ]
Zhang, Hui [1 ,2 ]
Criminisi, Antonio [3 ]
机构
[1] UCL, Ctr Med Image Comp, Gower St, London WC1E 6BT, England
[2] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[3] Microsoft Res Cambridge, Cambridge, England
[4] UCL, Inst Neurol, Queen Sq, London, England
[5] Univ Copenhagen, Hvidovre Hosp, Ctr Funct & Diagnost Imaging & Res, Danish Res Ctr Magnet Resonance, Hvidovre, Denmark
[6] Tech Univ Denmark, Dept Appl Maths & Comp Sci, Lyngby, Denmark
[7] Univ Oxford, John Radcliffe Hosp, FMRIB Ctr, Headington, England
[8] Univ Nottingham, Sch Med, Sir Peter Mansfield Imaging Ctr, Nottingham, England
基金
英国工程与自然科学研究理事会;
关键词
SUPERRESOLUTION RECONSTRUCTION; WEIGHTED IMAGES; BRAIN; RESOLUTION; ORIENTATION; TRACTOGRAPHY; ACQUISITION; PARAMETERS; PROJECT; SCANNER;
D O I
10.1016/j.neuroimage.2017.02.089
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment unseen low quality images, for example by enhancing image resolution or information content. Here, we demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In microstructure imaging, IQT shows potential in estimating, from standard "single-shell" data (one non-zero b-value), maps of microstructural parameters that normally require specialised multi-shell data. Further experiments show strong generalisability, highlighting IQT's benefits even when the training set does not directly represent the application domain. The concept extends naturally to many other imaging modalities and reconstruction problems.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 50 条
  • [41] Scanner invariant representations for diffusion MRI harmonization
    Moyer, Daniel
    Steeg, Greg Ver
    Tax, Chantal M. W.
    Thompson, Paul M.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (04) : 2174 - 2189
  • [42] Background and mathematical analysis of diffusion MRI methods
    Oezcan, Alpay
    Wong, Kenneth H.
    Larson-Prior, Linda
    Cho, Zang-Hee
    Mun, Seong K.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2012, 22 (01) : 44 - 52
  • [43] Diffusion MRI data analysis assisted by deep learning synthesized anatomical images (DeepAnat)
    Li, Ziyu
    Fan, Qiuyun
    Bilgic, Berkin
    Wang, Guangzhi
    Wu, Wenchuan
    Polimeni, Jonathan R.
    Miller, Karla L.
    Huang, Susie Y.
    Tian, Qiyuan
    MEDICAL IMAGE ANALYSIS, 2023, 86
  • [44] A supervised learning approach for diffusion MRI quality control with minimal training data
    Graham, Mark S.
    Drobnjak, Ivana
    Zhang, Hui
    NEUROIMAGE, 2018, 178 : 668 - 676
  • [45] Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI
    Novikov, Dmitry S.
    Veraart, Jelle
    Jelescu, Ileana O.
    Fieremans, Els
    NEUROIMAGE, 2018, 174 : 518 - 538
  • [46] Measurement of Full Diffusion Tensor Distribution Using High-Gradient Diffusion MRI and Applications in Diffuse Gliomas
    Song, Yiqiao
    Ly, Ina
    Fan, Qiuyun
    Nummenmaa, Aapo
    Martinez-Lage, Maria
    Curry, William T.
    Dietrich, Jorg
    Forst, Deborah A.
    Rosen, Bruce R.
    Huang, Susie Y.
    Gerstner, Elizabeth R.
    FRONTIERS IN PHYSICS, 2022, 10
  • [47] Evaluation of Temozolomide Treatment for Glioblastoma Using Amide Proton Transfer Imaging and Diffusion MRI
    Onishi, Ryutarou
    Sawaya, Reika
    Tsuji, Keiho
    Arihara, Narumi
    Ohki, Akiko
    Ueda, Junpei
    Hata, Junichi
    Saito, Shigeyoshi
    CANCERS, 2022, 14 (08)
  • [48] Diffusion MRI in the heart
    Mekkaoui, Choukri
    Reese, Timothy G.
    Jackowski, Marcel P.
    Bhat, Himanshu
    Sosnovik, David E.
    NMR IN BIOMEDICINE, 2017, 30 (03)
  • [49] MRI pyschophysics: An experimental framework relating image quality to diagnostic performance metrics
    Durand, Daniel J.
    Carrino, John A.
    Fayad, Laura M.
    Huisman, Thierry A. G. M.
    El-Sharkawy, AbdEl-Monem M.
    Edelstein, William A.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 37 (06) : 1402 - 1408
  • [50] The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study
    Mars, Rogier B.
    Foxley, Sean
    Verhagen, Lennart
    Jbabdi, Saad
    Sallet, Jerome
    Noonan, MaryAnn P.
    Neubert, Franz-Xaver
    Andersson, Jesper L.
    Croxson, Paula L.
    Dunbar, Robin I. M.
    Khrapitchev, Alexandre A.
    Sibson, Nicola R.
    Miller, Karla L.
    Rushworth, Matthew F. S.
    BRAIN STRUCTURE & FUNCTION, 2016, 221 (08) : 4059 - 4071