Image quality transfer and applications in diffusion MRI

被引:77
|
作者
Alexander, Daniel C. [1 ,2 ]
Zikic, Darko [3 ]
Ghosh, Aurobrata [1 ,2 ]
Tanno, Ryutaro [1 ,2 ]
Wottschel, Viktor [4 ]
Zhang, Jiaying [1 ,2 ]
Kaden, Enrico [1 ,2 ]
Dyrby, Tim B. [5 ,6 ]
Sotiropoulos, Stamatios N. [7 ,8 ]
Zhang, Hui [1 ,2 ]
Criminisi, Antonio [3 ]
机构
[1] UCL, Ctr Med Image Comp, Gower St, London WC1E 6BT, England
[2] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[3] Microsoft Res Cambridge, Cambridge, England
[4] UCL, Inst Neurol, Queen Sq, London, England
[5] Univ Copenhagen, Hvidovre Hosp, Ctr Funct & Diagnost Imaging & Res, Danish Res Ctr Magnet Resonance, Hvidovre, Denmark
[6] Tech Univ Denmark, Dept Appl Maths & Comp Sci, Lyngby, Denmark
[7] Univ Oxford, John Radcliffe Hosp, FMRIB Ctr, Headington, England
[8] Univ Nottingham, Sch Med, Sir Peter Mansfield Imaging Ctr, Nottingham, England
基金
英国工程与自然科学研究理事会;
关键词
SUPERRESOLUTION RECONSTRUCTION; WEIGHTED IMAGES; BRAIN; RESOLUTION; ORIENTATION; TRACTOGRAPHY; ACQUISITION; PARAMETERS; PROJECT; SCANNER;
D O I
10.1016/j.neuroimage.2017.02.089
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment unseen low quality images, for example by enhancing image resolution or information content. Here, we demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In microstructure imaging, IQT shows potential in estimating, from standard "single-shell" data (one non-zero b-value), maps of microstructural parameters that normally require specialised multi-shell data. Further experiments show strong generalisability, highlighting IQT's benefits even when the training set does not directly represent the application domain. The concept extends naturally to many other imaging modalities and reconstruction problems.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 50 条
  • [31] Tractography with T1-weighted MRI and associated anatomical constraints on clinical quality diffusion MRI
    Yu, Tian
    Li, Yunhe
    Kim, Michael E.
    Gao, Chenyu
    Yang, Qi
    Cai, Leon Y.
    Resnick, Susane M.
    Beason-Held, Lori L.
    Moyer, Daniel C.
    Schilling, Kurt G.
    Landman, Bennett A.
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [32] Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI
    Sotiropoulos, Stamatios N.
    Behrens, Timothy E. J.
    Jbabdi, Saad
    NEUROIMAGE, 2012, 60 (02) : 1412 - 1425
  • [33] RubiX: Combining Spatial Resolutions for Bayesian Inference of Crossing Fibers in Diffusion MRI
    Sotiropoulos, Stamatios N.
    Jbabdi, Saad
    Andersson, Jesper L.
    Woolrich, Mark W.
    Ugurbil, Kamil
    Behrens, Timothy E. J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (06) : 969 - 982
  • [34] Higher Order Spherical Harmonics Reconstruction of Fetal Diffusion MRI With Intensity Correction
    Deprez, Maria
    Price, Anthony
    Christiaens, Daan
    Estrin, Georgia Lockwood
    Cordero-Grande, Lucilio
    Hutter, Jana
    Daducci, Alessandro
    Tournier, Jacques-Donald
    Rutherford, Mary
    Counsell, Serena J.
    Cuadra, Merixtell Bach
    Hajnal, Joseph, V
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (04) : 1104 - 1113
  • [35] Ground Truth Hardware Phantoms for Validation of Diffusion-Weighted MRI Applications
    Pullens, Pim
    Roebroeck, Alard
    Goebel, Rainer
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 32 (02) : 482 - 488
  • [36] Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities
    Dhollander, Thijs
    Clemente, Adam
    Singh, Mervyn
    Boonstra, Frederique
    Civier, Oren
    Duque, Juan Dominguez
    Egorova, Natalia
    Enticott, Peter
    Fuelscher, Ian
    Gajamange, Sanuji
    Genc, Sila
    Gottlieb, Elie
    Hyde, Christian
    Imms, Phoebe
    Kelly, Claire
    Kirkovski, Melissa
    Kolbe, Scott
    Liang, Xiaoyun
    Malhotra, Atul
    Mito, Remika
    Poudel, Govinda
    Silk, Tim J.
    Vaughan, David N.
    Zanin, Julien
    Raffelt, David
    Caeyenberghs, Karen
    NEUROIMAGE, 2021, 241
  • [37] Contextual Diffusion Image Post-processing Aids Clinical Applications
    Prckovska, Vesna
    Andorra, Magi
    Villoslada, Pablo
    Martinez-Heras, Eloy
    Duits, Remco
    Fortin, David
    Rodrigues, Paulo
    Descoteaux, Maxime
    VISUALIZATION AND PROCESSING OF HIGHER ORDER DESCRIPTORS FOR MULTI-VALUED DATA, 2015, : 353 - 377
  • [38] Dipy, a library for the analysis of diffusion MRI data
    Garyfallidis, Eleftherios
    Brett, Matthew
    Amirbekian, Bagrat
    Rokem, Ariel
    van der Walt, Stefan
    Descoteaux, Maxime
    Nimmo-Smith, Ian
    FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [39] Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited
    Thomas, Cibu
    Ye, Frank Q.
    Irfanoglu, M. Okan
    Modi, Pooja
    Saleem, Kadharbatcha S.
    Leopold, David A.
    Pierpaoli, Carlo
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (46) : 16574 - 16579
  • [40] Measuring Anisotropic Diffusion in Kidney Using MRI
    Wu, MingChen
    Lin, YuChun
    Shieh, CharngChyi
    Wan, YungLiang
    Yen, Tzung-Hai
    Ng, KoonKwan
    Wai, YauYau
    Wang, JiunJie
    ACADEMIC RADIOLOGY, 2011, 18 (09) : 1168 - 1174