Image quality transfer and applications in diffusion MRI

被引:77
|
作者
Alexander, Daniel C. [1 ,2 ]
Zikic, Darko [3 ]
Ghosh, Aurobrata [1 ,2 ]
Tanno, Ryutaro [1 ,2 ]
Wottschel, Viktor [4 ]
Zhang, Jiaying [1 ,2 ]
Kaden, Enrico [1 ,2 ]
Dyrby, Tim B. [5 ,6 ]
Sotiropoulos, Stamatios N. [7 ,8 ]
Zhang, Hui [1 ,2 ]
Criminisi, Antonio [3 ]
机构
[1] UCL, Ctr Med Image Comp, Gower St, London WC1E 6BT, England
[2] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[3] Microsoft Res Cambridge, Cambridge, England
[4] UCL, Inst Neurol, Queen Sq, London, England
[5] Univ Copenhagen, Hvidovre Hosp, Ctr Funct & Diagnost Imaging & Res, Danish Res Ctr Magnet Resonance, Hvidovre, Denmark
[6] Tech Univ Denmark, Dept Appl Maths & Comp Sci, Lyngby, Denmark
[7] Univ Oxford, John Radcliffe Hosp, FMRIB Ctr, Headington, England
[8] Univ Nottingham, Sch Med, Sir Peter Mansfield Imaging Ctr, Nottingham, England
基金
英国工程与自然科学研究理事会;
关键词
SUPERRESOLUTION RECONSTRUCTION; WEIGHTED IMAGES; BRAIN; RESOLUTION; ORIENTATION; TRACTOGRAPHY; ACQUISITION; PARAMETERS; PROJECT; SCANNER;
D O I
10.1016/j.neuroimage.2017.02.089
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment unseen low quality images, for example by enhancing image resolution or information content. Here, we demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In microstructure imaging, IQT shows potential in estimating, from standard "single-shell" data (one non-zero b-value), maps of microstructural parameters that normally require specialised multi-shell data. Further experiments show strong generalisability, highlighting IQT's benefits even when the training set does not directly represent the application domain. The concept extends naturally to many other imaging modalities and reconstruction problems.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 50 条
  • [21] A fiber coherence index for quality control of B-table orientation in diffusion MRI scans
    Schilling, Kurt G.
    Yeh, Fang-Cheng
    Nath, Vishwesh
    Hansen, Colin
    Williams, Owen
    Resnick, Susan
    Anderson, Adam W.
    Landman, Bennett A.
    MAGNETIC RESONANCE IMAGING, 2019, 58 : 82 - 89
  • [22] Simultaneous Acquisition of Diffusion Tensor and Dynamic Diffusion MRI
    Gangolli, Mihika
    Wang, Wen-Tung
    Gai, Neville D.
    Pham, Dzung L.
    Butman, John A.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (04) : 1079 - 1092
  • [23] Exploring the Allen Mouse Connectivity experiments with new neuroinformatic tools for neurophotonics, diffusion MRI and tractography applications
    Abou-Hamdan, Mahdi
    Cosenza, Elise
    Miraux, Sylvain
    Petit, Laurent
    Lefebvre, Joel
    NEURAL IMAGING AND SENSING 2023, 2023, 12365
  • [24] EFFECT OF SLICE ACQUISITION DIRECTION ON IMAGE QUALITY IN THORACIC MRI
    CHAKO, AC
    TEMPANY, CMC
    ZERHOUNI, EA
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1995, 19 (06) : 936 - 940
  • [25] Functional Informed Fiber Tracking Using Combination of Diffusion and Functional MRI
    Yang, Zhipeng
    He, Peiyu
    Zhou, Jiliu
    Ding, Zhaohua
    Wu, Xi
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (03) : 794 - 801
  • [26] Advancements in Diffusion MRI Tractography for Neurosurgery
    Kamagata, Koji
    Andica, Christina
    Uchida, Wataru
    Takabayashi, Kaito
    Saito, Yuya
    Lukies, Matthew
    Hagiwara, Akifumi
    Fujita, Shohei
    Akashi, Toshiaki
    Wada, Akihiko
    Hori, Masaaki
    Kamiya, Kouhei
    Zalesky, Andrew
    Aoki, Shigeki
    INVESTIGATIVE RADIOLOGY, 2024, 59 (01) : 13 - 25
  • [27] VARIATIONAL DENOISING OF DIFFUSION WEIGHTED MRI
    McGraw, Tim
    Vemuri, Baba
    Oezarslan, Evren
    Chen, Yunmei
    Mareci, Thomas
    INVERSE PROBLEMS AND IMAGING, 2009, 3 (04) : 625 - 648
  • [28] Improved Image Quality and Detection of Small Cerebral Infarctions With Diffusion-Tensor Trace Imaging
    Cauley, Keith A.
    Thangasamy, Senthur
    Dundamadappa, Sathish K.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2013, 200 (06) : 1327 - 1333
  • [29] Low SNR in Diffusion MRI Models
    Polzehl, Joerg
    Tabelow, Karsten
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (516) : 1480 - 1490
  • [30] Synthetic MRI of the lumbar spine at 3.0 T: feasibility and image quality comparison with conventional MRI
    Zhang, Weilan
    Zhu, Jingyi
    Xu, Xiaohan
    Fan, Guoguang
    ACTA RADIOLOGICA, 2020, 61 (04) : 461 - 470