Image quality transfer and applications in diffusion MRI

被引:77
|
作者
Alexander, Daniel C. [1 ,2 ]
Zikic, Darko [3 ]
Ghosh, Aurobrata [1 ,2 ]
Tanno, Ryutaro [1 ,2 ]
Wottschel, Viktor [4 ]
Zhang, Jiaying [1 ,2 ]
Kaden, Enrico [1 ,2 ]
Dyrby, Tim B. [5 ,6 ]
Sotiropoulos, Stamatios N. [7 ,8 ]
Zhang, Hui [1 ,2 ]
Criminisi, Antonio [3 ]
机构
[1] UCL, Ctr Med Image Comp, Gower St, London WC1E 6BT, England
[2] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[3] Microsoft Res Cambridge, Cambridge, England
[4] UCL, Inst Neurol, Queen Sq, London, England
[5] Univ Copenhagen, Hvidovre Hosp, Ctr Funct & Diagnost Imaging & Res, Danish Res Ctr Magnet Resonance, Hvidovre, Denmark
[6] Tech Univ Denmark, Dept Appl Maths & Comp Sci, Lyngby, Denmark
[7] Univ Oxford, John Radcliffe Hosp, FMRIB Ctr, Headington, England
[8] Univ Nottingham, Sch Med, Sir Peter Mansfield Imaging Ctr, Nottingham, England
基金
英国工程与自然科学研究理事会;
关键词
SUPERRESOLUTION RECONSTRUCTION; WEIGHTED IMAGES; BRAIN; RESOLUTION; ORIENTATION; TRACTOGRAPHY; ACQUISITION; PARAMETERS; PROJECT; SCANNER;
D O I
10.1016/j.neuroimage.2017.02.089
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment unseen low quality images, for example by enhancing image resolution or information content. Here, we demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In microstructure imaging, IQT shows potential in estimating, from standard "single-shell" data (one non-zero b-value), maps of microstructural parameters that normally require specialised multi-shell data. Further experiments show strong generalisability, highlighting IQT's benefits even when the training set does not directly represent the application domain. The concept extends naturally to many other imaging modalities and reconstruction problems.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 50 条
  • [1] Holistic Image Reconstruction for Diffusion MRI
    Golkov, Vladimir
    Portegies, Jorg M.
    Golkov, Antonij
    Duits, Remco
    Cremers, Daniel
    COMPUTATIONAL DIFFUSION MRI, 2016, : 27 - 39
  • [2] THEORY AND APPLICATIONS OF DIFFUSION MRI
    Leemans, Alexander
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 628 - 631
  • [3] Diffusion MRI visualization
    Schultz, Thomas
    Vilanova, Anna
    NMR IN BIOMEDICINE, 2019, 32 (04)
  • [4] Diffusion MRI: Technique and clinical applications
    Kremer, S.
    Oppenheim, C.
    Schmitt, E.
    Dietemann, J-L
    JOURNAL DE RADIOLOGIE, 2007, 88 (03): : 428 - 443
  • [5] Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results
    Irfanoglu, M. Okan
    Walker, Lindsay
    Sarlls, Joelle
    Marenco, Stefano
    Pierpaoli, Carlo
    NEUROIMAGE, 2012, 61 (01) : 275 - 288
  • [6] Diffusion MRI fiber tractography of the brain
    Jeurissen, Ben
    Descoteaux, Maxime
    Mori, Susumu
    Leemans, Alexander
    NMR IN BIOMEDICINE, 2019, 32 (04)
  • [7] Mathematical methods for diffusion MRI processing
    Lenglet, C.
    Campbell, J. S. W.
    Descoteaux, M.
    Haro, G.
    Savadjiev, P.
    Wassermann, D.
    Anwander, A.
    Deriche, R.
    Pike, G. B.
    Sapiro, G.
    Siddiqi, K.
    Thompson, P. M.
    NEUROIMAGE, 2009, 45 (01) : S111 - S122
  • [8] Diffusion tensor (DT)-MRI of the brain. Review of clinical pediatric applications
    Bernardi, B
    Price, G
    Thomas, EJ
    Makki, M
    RIVISTA DI NEURORADIOLOGIA, 2005, 18 (03): : 266 - 288
  • [9] Conventional, Diffusion and Magnetization Transfer MRI in the Study of Myelination
    Argyropoulou, M. I.
    NEURORADIOLOGY JOURNAL, 2009, 22 : 24 - 25
  • [10] Imaging brain microstructure with diffusion MRI: practicality and applications
    Alexander, Daniel C.
    Dyrby, Tim B.
    Nilsson, Markus
    Zhang, Hui
    NMR IN BIOMEDICINE, 2019, 32 (04)