Impact of salt bridges on the equilibrium binding and adhesion of human CD2 and CD58

被引:25
作者
Bayas, Marco V.
Kearney, Alice
Avramovic, Adam
van der Merwe, P. Anton
Leckband, Deborah E.
机构
[1] Univ Oxford, Sir William Dunn Sch Pathol, Oxford OX1 3RE, England
[2] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[3] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
基金
英国医学研究理事会;
关键词
D O I
10.1074/jbc.M607968200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study describes quantitative investigations of the impact of single charge mutations on equilibrium binding, kinetics, and the adhesion strength of the CD2-CD58 interaction. Previously steered molecular dynamics simulations guided the selection of the charge mutants investigated, which include the CD2 mutants D31A, K41A, K51A, and K91A. This set includes mutations in which the previous cell aggregation and binding data either agreed or disagreed with the steered molecular dynamics predictions. Surface plasmon resonance measurements quantified the solution binding properties. Adhesion was quantified with the surface force apparatus, which was used previously to study the closely related CD2-CD48 interaction. The results reveal roles that these salt bridges play in equilibrium binding and adhesion. We discuss both the molecular basis of this behavior and its implications for cell adhesion.
引用
收藏
页码:5589 / 5596
页数:8
相关论文
共 34 条
[1]   THE CD58 (LFA-3) BINDING-SITE IS A LOCALIZED AND HIGHLY-CHARGED SURFACE-AREA ON THE AGFCC'C'' FACE OF THE HUMAN CD2 ADHESION DOMAIN [J].
ARULANANDAM, ARN ;
WITHKA, JM ;
WYSS, DF ;
WAGNER, G ;
KISTER, A ;
PALLAI, P ;
RECNY, MA ;
REINHERZ, EL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (24) :11613-11617
[2]   INTERACTION BETWEEN HUMAN CD2 AND CD58 INVOLVES THE MAJOR BETA-SHEET SURFACE OF EACH OF THEIR RESPECTIVE ADHESION DOMAINS [J].
ARULANANDAM, ARN ;
KISTER, A ;
MCGREGOR, MJ ;
WYSS, DF ;
WAGNER, G ;
REINHERZ, EL .
JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 180 (05) :1861-1871
[3]   Forced detachment of the CD2-CD58 complex [J].
Bayas, MV ;
Schulten, K ;
Leckband, D .
BIOPHYSICAL JOURNAL, 2003, 84 (04) :2223-2233
[4]  
BEBBINGTON C R, 1991, Methods (Orlando), V2, P136, DOI 10.1016/S1046-2023(05)80214-2
[5]   CRYSTAL-STRUCTURE OF THE EXTRACELLULAR REGION OF THE HUMAN CELL-ADHESION MOLECULE CD2 AT 2.5-ANGSTROM RESOLUTION [J].
BODIAN, DL ;
JONES, EY ;
HARLOS, K ;
STUART, DI ;
DAVIS, SJ .
STRUCTURE, 1994, 2 (08) :755-766
[6]   The structure and ligand interactions of CD2: Implications for T-cell function [J].
Davis, SJ ;
vanderMerwe, PA .
IMMUNOLOGY TODAY, 1996, 17 (04) :177-187
[7]   CD2 and the nature of protein interactions mediating cell-cell recognition [J].
Davis, SJ ;
Ikemizu, S ;
Wild, MK ;
van der Merwe, PA .
IMMUNOLOGICAL REVIEWS, 1998, 163 :217-236
[8]  
DAVIS SJ, 1990, J BIOL CHEM, V265, P10410
[9]   The role of charged residues mediating low affinity protein-protein recognition at the cell surface by CD2 [J].
Davis, SJ ;
Davies, EA ;
Tucknott, MG ;
Jones, EY ;
van der Merwe, PA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (10) :5490-5494
[10]  
Evans E, 1998, FARADAY DISCUSS, V111, P1